Tracking down quirks at the LHC

Simon Knapen, Tim Lou, Michele Papucci, Jack Setford 1708.02243

@ Searches for long-lived particles at the LHC in Trieste

Quirks

Quirks: $\Lambda_c \ll m_Q$

Oscillates, eventually annihilates

Quirk-antiquirk pairs cannot be created, flux tube never breaks

Spectacular, but...

... unknown how to reconstruct it

J. Kang, M. Luty: arXiv: 0805.4642

Existing limits

In the long string-length limit, the HSCP searches are sensitive

M. Farina, M. Low: 1703.00912

Existing limits

In the long string-length limit, the HSCP searches are sensitive

M. Farina, M. Low: 1703.00912

In the short string-length limit, the hits merge in the detector

Exclude $m_Q > 110$ GeV for $\Lambda > 10$ keV (Drell-Yan production)

PhysRevLett.105.211803: D0 collaboration

Existing limits

In the long string-length limit, the HSCP searches are sensitive

M. Farina, M. Low: 1703.00912

In the short string-length limit, the hits merge in the detector

Exclude $m_Q > 110$ GeV for $\Lambda > 10$ keV (Drell-Yan production)

PhysRevLett.105.211803: D0 collaboration

m to mm size oscillations are unconstrained

10 / 19 / 2017 Simon Knapen LBNL & UC Berkeley

Why is this hard?

- Signature depends strongly on m_Q and Λ
- Even for same model point (m_Q , Λ), strong dependence on ISR

Both trajectories must be fit together, in total 8 degrees of freedom in the fit!

Tons of unassociated hits from pile-up

Why is this hard?

- Signature depends strongly on m_Q and Λ
- Even for same model point (m_Q, Λ) , strong dependence on ISR

Both trajectories must be fit together, in total 8 degrees of freedom in the fit!

Tons of unassociated hits from pile-up

Need a model-independent way to reject pile-up background to 10⁻⁹, while maintaining signal efficiency

General idea

All hits lay in a plane

Dimensional analysis:

oscillation amplitude and period

$$d \sim \Delta t \sim \frac{m_Q}{\Lambda^2}$$

torque

$$\tau \sim 2d \times eB$$

angular rotation

$$\Delta \phi \sim \frac{\tau \Delta t^2}{I} \sim e \frac{B}{\Lambda^2}$$

As long as the string tension >> Lorentz force, the trajectories will be planar

(valid for any central force)

General idea

All hits lay in a plane

Dimensional analysis:

oscillation amplitude and period

$$d \sim \Delta t \sim \frac{m_Q}{\Lambda^2}$$

torque

$$\tau \sim 2d \times eB$$

angular rotation

$$\Delta \phi \sim \frac{\tau \Delta t^2}{I} \sim e \frac{B}{\Lambda^2}$$

As long as the string tension >> Lorentz force, the trajectories will be planar

(valid for any central force)

Analysis strategy

- Trigger on MET (> 200 GeV)
 (muon trigger may also be possible)
- 2. Select planes with pairs of hits
- 3. Apply some selection cuts

For simplicity, only including the barrel of the pixel and SCT (including more detector elements would of course enhance the sensitivity)

Simulation

Signal

- 0j+1j matched sample with Madgraph+Pythia 8
- Numerically solve quirk EOM, with B-field
- Propagate through theory model of ATLAS inner tracker (account for resolution, hit merging, finite beamspot, out-of-time hits etc)
- Overlay pile-up

Simulation

Signal

- 0j+1j matched sample with Madgraph+Pythia 8
- Numerically solve quirk EOM, with B-field
- Propagate through theory model of ATLAS inner tracker (account for resolution, hit merging, finite beamspot, out-of-time hits etc)
- Overlay pile-up

Pile-up

- Pythia 8 min bias, on average 50 pile-up interactions per crossing (~ twice current conditions)
- Propagate through theory model of ATLAS inner tracker (also account for bremstrahlung, dE/dx & service layers)

What is a 'good' plane?

We need a metric

$$\Delta = \sqrt{\mathbf{T}_{ij}\mathbf{n}_i\mathbf{n}_j}$$

$$\downarrow$$
 minimize this normal vector of plane

$$\mathbf{T}(\mathbf{x}_a)_{ij} \equiv rac{1}{N-1} \sum_{a=1}^N \mathbf{x}_i^a \, \mathbf{x}_j^a$$
 coordinates of hits

What is a 'good' plane?

We need a metric

$$\Delta = \sqrt{\mathbf{T}_{ij}\mathbf{n}_i\mathbf{n}_j}$$

$$\downarrow$$
 minimize this normal vector of plane

Eigenvectors:

n₁: "thickness" of the plane

n₂: "width" of the strip

n₃: direction of the center of mass frame

$$\mathbf{T}(\mathbf{x}_a)_{ij} \equiv rac{1}{N-1} \sum_{a=1}^N \mathbf{x}_i^a \, \mathbf{x}_j^a$$
 coordinates of hits

What is a 'good' plane?

We need a metric

$$\Delta = \sqrt{\mathbf{T}_{ij}\mathbf{n}_i\mathbf{n}_j}$$

$$\downarrow$$
 minimize this normal vector of plane

Eigenvectors:

n₁: "thickness" of the plane

n₂: "width" of the strip

n₃: direction of the center of mass frame

$$\mathbf{T}(\mathbf{x}_a)_{ij} \equiv rac{1}{N-1} \sum_{a=1}^N \mathbf{x}_i^a \, \mathbf{x}_j^a$$
 coordinates of hits

Fitting procedure

- 1. Seeding: starting with outer most layer 4th and 3rd layer of SCT
 - Select pairs of hits in each plane with $\Delta \phi < 0.1$ and $\Delta z < 2$ cm
 - 1 pair in 4th layer + 1 pair in 3th layer makes a seed

Fitting procedure

- 1. Seeding: starting with outer most layer 4th and 3rd layer of SCT
 - Select pairs of hits in each plane with $\Delta \phi < 0.1$ and $\Delta z < 2$ cm
 - 1 pair in 4th layer + 1 pair in 3th layer makes a seed
- 2. Iterative fitting: add hits from outer to inner layers in the positive n₃ direction
 - When adding a hit, demand that $\Delta s_{new} < 3 \Delta s_{old}$ and $\Delta w_{new} < 3 \Delta w_{old}$
 - Proceed to next layer if no hit is found, and increment variable N_{miss}

Fitting procedure

- 1. Seeding: starting with outer most layer 4th and 3rd layer of SCT
 - Select pairs of hits in each plane with $\Delta \phi < 0.1$ and $\Delta z < 2$ cm
 - 1 pair in 4th layer + 1 pair in 3th layer makes a seed
- 2. Iterative fitting: add hits from outer to inner layers in the positive n₃ direction
 - When adding a hit, demand that $\Delta s_{new} < 3 \Delta s_{old}$ and $\Delta w_{new} < 3 \Delta w_{old}$
 - Proceed to next layer if no hit is found, and increment variable N_{miss}
- 3. Plane selection: cut on
 - ∆s
 - ∆w
 - N_{miss}

Results

cuts:

- At most one missing hit
- $\Delta s < 0.01$ cm and $\Delta w < 1$ cm

For 300 fb⁻¹, only a handful of background events

10 / 19 / 2017 Simon Knapen LBNL & UC Berkeley

Signal efficiency

$$\epsilon = \epsilon_{\mathrm{trig}} \times \epsilon_{\mathrm{fid}} \times \epsilon_{\mathrm{reco}}$$

 ϵ_{trig} : pass MET trigger

 ϵ_{fid} : 2 hits in each layer of pixel + SCT barrel

 ϵ_{reco} : efficiency of identifying correct plane

$m_Q \; ({ m GeV})$	Λ (keV)	$\epsilon_{ m trig}$	$\epsilon_{ m fid}$	$\epsilon_{ m reco}$		
	1			0.11		
800	2			0.41		
(DY)	3	0.10	0.28	0.65		
	4			0.72		
	5			0.74		seeding fails, because hits too far apar
	1		0.083			
1000	2			0.35		
1800 (QCD)	3	0.24	0.28	0.59		
	5		0.74			
	10			0.58		Hits start merging, only 1 hit per layer i
					-	found

Projected reach

Colored production

$(3,1)_{\frac{2}{3}}, N_Q = 2 \text{ Quirks}$ Exclusion 30000 Discovery $d_{\rm cm} = 100 \ \mu \text{m}$ 20000 linear 10000 10^{3} 10^{2} HSCP, 300fb HSCP, 12,9 fb 10^{1} 1500 2000 2500 500 1000 $m_Q \, (\mathrm{GeV})$

Drell-Yan production

(Assuming negligible irreducible backgrounds)

Projected reach

10 / 19 / 2017 Simon Knapen LBNL & UC Berkeley

Upshot

Quirks can be found by searching for hits forming planes, without developing a tracking algorithm for quirky tracks.

- So far only used barrel of pixel & SCT
- Works for any central force, provided that is stronger than the B-field
- Let's not overlook the high string tension case!

Thanks!