Tracking down quirks at the LHC

Simon Knapen, Tim Lou, Michele Papucci, Jack Setford 1708.02243

@ Searches for long-lived particles at the LHC in Trieste

Quirks

Quirks: $\Lambda_{c} \ll m_{Q}$

Oscillates, eventually annihilates
Quirk-antiquirk pairs cannot be created, flux tube never breaks
... unknown how to reconstruct it
J. Kang, M. Luty: arXiv: 0805.4642

Existing limits

In the long string-length limit, the HSCP searches are sensitive

M. Farina, M. Low: 1703.00912

Existing limits

In the long string-length limit, the HSCP searches are sensitive

M. Farina, M. Low: 1703.00912

In the short string-length limit, the hits merge in the detector

Exclude $\mathrm{m}_{\mathrm{Q}}>110 \mathrm{GeV}$ for $\Lambda>10 \mathrm{keV}$ (Drell-Yan production)

PhysRevLett.105.211803: DO collaboration

Existing limits

In the long string-length limit, the HSCP searches are sensitive

M. Farina, M. Low: 1703.00912

In the short string-length limit, the hits merge in the detector

Exclude $\mathrm{m}_{\mathrm{Q}}>110 \mathrm{GeV}$ for $\Lambda>10 \mathrm{keV}$ (Drell-Yan production)

PhysRevLett.105.211803: DO collaboration
m to mm size oscillations are unconstrained

Why is this hard?

- Signature depends strongly on m_{Q} and \wedge
- Even for same model point (m_{Q}, Λ), strong dependence on ISR

Both trajectories must be fit together, in total 8 degrees of freedom in the fit!

- Tons of unassociated hits from pile-up

Why is this hard?

- Signature depends strongly on m_{Q} and \wedge
- Even for same model point (m_{Q}, Λ), strong dependence on ISR

Both trajectories must be fit together, in total 8 degrees of freedom in the fit!

- Tons of unassociated hits from pile-up

Need a model-independent way to reject pile-up background to 10-9, while maintaining signal efficiency

General idea

All hits lay in a plane

oscillation amplitude and period

$$
d \sim \Delta t \sim \frac{m_{Q}}{\Lambda^{2}}
$$

torque

$$
\tau \sim 2 d \times e B
$$

angular rotation

$$
\Delta \phi \sim \frac{\tau \Delta t^{2}}{I} \sim e \frac{B}{\Lambda^{2}}
$$

As long as the string tension >> Lorentz force, the trajectories will be planar (valid for any central force)

General idea

All hits lay in a plane

Dimensional analysis:
oscillation amplitude and period

$$
d \sim \Delta t \sim \frac{m_{Q}}{\Lambda^{2}}
$$

torque

$$
\tau \sim 2 d \times e B
$$

angular rotation

$$
\Delta \phi \sim \frac{\tau \Delta t^{2}}{I} \sim e \frac{B}{\Lambda^{2}}
$$

As long as the string tension >> Lorentz force, the trajectories will be planar (valid for any central force)

Analysis strategy

1. Trigger on MET (> 200 GeV) (muon trigger may also be possible)
2. Select planes with pairs of hits
3. Apply some selection cuts

For simplicity, only including the barrel of the pixel and SCT (including more detector elements would of course enhance the sensitivity)

Simulation

Signal

- $0 \mathrm{j}+1 \mathrm{j}$ matched sample with Madgraph+Pythia 8
- Numerically solve quirk EOM, with B-field
- Propagate through theory model of ATLAS inner
 tracker (account for resolution, hit merging, finite beamspot, out-of-time hits etc)
- Overlay pile-up

Simulation

Signal

- $0 \mathrm{j}+1 \mathrm{j}$ matched sample with Madgraph+Pythia 8
- Numerically solve quirk EOM, with B-field
- Propagate through theory model of ATLAS inner
 tracker (account for resolution, hit merging, finite beamspot, out-of-time hits etc)
- Overlay pile-up
Pile-up
- Pythia 8 min bias, on average 50 pile-up interactions per crossing (\sim twice current conditions)
- Propagate through theory model of ATLAS inner tracker (also account for bremstrahlung, dE/dx \& service layers)

What is a 'good' plane?

We need a metric

$$
\underset{\swarrow}{\Delta}=\sqrt{\mathbf{T}_{i j} \mathbf{n}_{i} \mathbf{n}_{j}}
$$

minimize this

$$
\mathbf{T}\left(\mathbf{x}_{a}\right)_{i j} \equiv \frac{1}{N-1} \sum_{a=1}^{N} \mathbf{x}_{i}^{a} \mathbf{x}_{j}^{a}
$$

What is a 'good' plane?

We need a metric

$$
\Delta=\sqrt{\mathbf{T}_{i j} \mathbf{n}_{i} \mathbf{n}_{j}}
$$

minimize this

Eigenvectors:
n_{1} : "thickness" of the plane
n_{2} : "width" of the strip
n_{3} : direction of the center of mass frame

$$
\mathbf{T}\left(\mathbf{x}_{a}\right)_{i j} \equiv \frac{1}{N-1} \sum_{a=1}^{N} \mathbf{x}_{i}^{a} \mathbf{x}_{j}^{a}
$$

coordinates of hits

What is a 'good' plane?

We need a metric

$$
\Delta=\sqrt{\mathbf{T}_{i j} \mathbf{n}_{i} \mathbf{n}_{j}}
$$

minimize this

Eigenvectors:
n_{1} : "thickness" of the plane
n_{2} : "width" of the strip
n_{3} : direction of the center of mass frame

$$
\mathbf{T}\left(\mathbf{x}_{a}\right)_{i j} \equiv \frac{1}{N-1} \sum_{a=1}^{N} \mathbf{x}_{i}^{a} \mathbf{x}_{j}^{a}
$$

coordinates of hits

Fitting procedure

1. Seeding: starting with outer most layer 4th and 3rd layer of SCT

- Select pairs of hits in each plane with $\Delta \phi<0.1$ and $\Delta z<2 \mathrm{~cm}$
- 1 pair in $4^{\text {th }}$ layer +1 pair in $3^{\text {th }}$ layer makes a seed

Fitting procedure

1. Seeding: starting with outer most layer 4th and 3rd layer of SCT

- Select pairs of hits in each plane with $\Delta \phi<0.1$ and $\Delta z<2 \mathrm{~cm}$
- 1 pair in $4^{\text {th }}$ layer +1 pair in $3^{\text {th }}$ layer makes a seed

2. Iterative fitting: add hits from outer to inner layers in the positive n_{3} direction

- When adding a hit, demand that $\Delta \mathrm{s}_{\text {new }}<3 \Delta \mathrm{~S}_{\text {old }}$ and $\Delta \mathrm{w}_{\text {new }}<3 \Delta \mathrm{w}_{\text {old }}$
- Proceed to next layer if no hit is found, and increment variable $\mathrm{N}_{\text {miss }}$

Fitting procedure

1. Seeding: starting with outer most layer 4th and 3rd layer of SCT

- Select pairs of hits in each plane with $\Delta \phi<0.1$ and $\Delta z<2 \mathrm{~cm}$
- 1 pair in $4^{\text {th }}$ layer +1 pair in $3^{\text {th }}$ layer makes a seed

2. Iterative fitting: add hits from outer to inner layers in the positive n_{3} direction

- When adding a hit, demand that $\Delta \mathrm{s}_{\text {new }}<3 \Delta \mathrm{~s}_{\text {old }}$ and $\Delta \mathrm{w}_{\text {new }}<3 \Delta \mathrm{w}_{\text {old }}$
- Proceed to next layer if no hit is found, and increment variable $\mathrm{N}_{\text {miss }}$

3. Plane selection: cut on

- $\Delta \mathrm{s}$
- $\Delta \mathrm{w}$
- $\mathrm{N}_{\text {miss }}$

Results

cuts:

- At most one missing hit
- $\Delta \mathrm{s}<0.01 \mathrm{~cm}$ and $\Delta \mathrm{w}<1 \mathrm{~cm}$

For $300 \mathrm{fb}^{-1}$, only a handful of background events

Signal efficiency

$$
\epsilon=\epsilon_{\text {trig }} \times \epsilon_{\text {fid }} \times \epsilon_{\text {reco }}
$$

$\epsilon_{t r i g}:$ pass MET trigger
$\epsilon_{f i d}: 2$ hits in each layer of pixel + SCT barrel
$\epsilon_{\text {reco }}:$ efficiency of identifying correct plane

Projected reach

Colored production

Drell-Yan production

(Assuming negligible irreducible backgrounds)

Projected reach

Drell-Yan production

Δw cut, due to (Assuming negligible irreducible backgrounds)
computational limitations

Upshot

Quirks can be found by searching for hits forming planes, without developing a tracking algorithm for quirky tracks.

- So far only used barrel of pixel \& SCT
- Works for any central force, provided that is stronger than the B-field
- Let's not overlook the high string tension case!

Thanks!

