The Standard Model (SM) works very well: too well?
→ SM does not explain everything: e.g. no Dark Matter candidate
→ Naturalness & low-mass of the Higgs boson suggest physics beyond the SM (BSM)

High Lumi-LHC: x100 LHC data at TeV scale
• Measure Higgs properties in detail
• Probe rare SM processes
• Search for new physics: none @LHC yet!
From the LHC to the HL-LHC

LHC / HL-LHC Plan

Run 1 | Run 2 | Run 3 | Run 4 - 5...

<table>
<thead>
<tr>
<th>LS1</th>
<th>13 TeV</th>
<th>13.5-14 TeV</th>
<th>14 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>splicing consolidation button collimators</td>
<td>EYETS</td>
<td>injector upgrade cryo Point 4 DS collimation P2-P7(11 T dip.) Civil Eng. P1-P5</td>
<td>HL-LHC installation</td>
</tr>
<tr>
<td>experiment beam pipes</td>
<td>nominal luminosity</td>
<td>experiment upgrade phase 1</td>
<td>experiment upgrade phase 2</td>
</tr>
<tr>
<td>7 TeV</td>
<td>8 TeV</td>
<td>30 fb⁻¹</td>
<td>14 TeV</td>
</tr>
</tbody>
</table>

10/20/2017

Yangyang Cheng | CMS Upgrade@LLP
Challenges from HL-LHC

Radiation Dose

Detector elements and electronics exposed to high radiation dose → limits equipment lifetime & degrades signal

Pile-up

140 - 200 additional pp collisions on top of process of interest

Display of a 140 PU event

7.5 x 10^{34} \text{ Hz/cm}^2, \ Pile-up <\mu> = 200
HL-LHC Upgrade: Objectives

• Replace components:
 – parts too damaged by the time of HL-LHC
 – parts that will not survive HL-LHC environment

• Extend coverage:
 – tracker, muon extension etc.

• Improve function:
 – higher granularity pixels, endcap cal; L1 tracking etc.

• New detector(s):
 – Fast timing layer

• Increase bandwidth:
 – trigger & DAQ
HL-LHC Upgrade: Overview

Trigger/HLT/DAQ
- Track information at L1-Trigger
- L1-Trigger: 12.5 μs latency - output 750 kHz
- HLT output =7.5 kHz

Barrel EM calorimeter
- Replace FE/BE electronics
- Lower operating temperature (8°C)

Muon systems
- Replace DT & CSC FE/BE electronics
- Complete RPC coverage in region 1.5 < |η| < 2.4
- Muon tagging 2.4 < |η| < 3

Replace Endcap Calorimeters
- Rad. tolerant - high granularity
- 3D capability

+Timing layer
(outside tracking volume)
- Radiation tolerant; high granularity
- Extend |η| coverage up to 4
Tracker Upgrade: Pixel

- Increased coverage w/ more disks:
 - $|\eta| \approx 2.5 \rightarrow |\eta| \approx 4$

- Radiation hardness w/ thinner pixels:
 - $285\mu m \rightarrow 150\mu m$

- Improved resolution w/ smaller pixels:
 - Also maintains occupancy $\sim 0.1\%$

- Reduced material budget
Tracker Upgrade: OT & L1 Track Trigger

- Six layers + five disks of pixels-strip/strip-strip modules
- Two-sided sensor modules → stubs → enable track finding at L1 for tracks w/ pT > 2GeV: ~15k stubs @ 14MHz

For more on LLP prospects w/ L1 Track Trigger, see Yuri Gershtein’s talk later today!
Excellent tracking performance with increased coverage and better resolution!

Vertexing resolution almost independent of pile-up; longitudinal resolution only ~50% worse than transverse (with 25x100x150 pixels)
Tracker Upgrade: LLP Prospects

- Heavy stable charged particles (e.g. split SUSY): high dE/dx in silicon sensor
- Phase2 inner pixel has analogue readout:
 - 4 (maybe more?) bit time-over-threshold info provides good resolution
- Phase2 outer tracker has digital readout + dedicated overthreshold bit (HIP flag) with programmable threshold (currently set at 1.4MIP)

Good separation between background and signal in dE/dx and number of overthreshold clusters per track
Calorimetry Upgrade: Barrel

- The crystals in the ECAL will be kept for duration of LHC.
- The FE & BE electronics will be replaced for more precise timing, useful in both pile-up mitigation and searches for new physics.
- Target (hardware fundamental limit): \(~30\text{ps for } E > ~30\text{GeV}\) (1/10 of current limit).
- Current studies on HCAL Barrel radiation damage suggest no need for replacement at HL-LHC: pending further study.

Expected dose in HCAL Barrel at HL-LHC, in 4500fb-1 ultimate scenario.
Calorimetry Upgrade: Endcap

The endcap calorimeter will be replaced with a silicon-based calorimeter:

- high granularity and 3D imaging to help mitigate PU
- Fast signal collection (<10ns) and **fast timing capability** (few tens of ps)

⇒ **4D info in space-time to reconstruct showers**

- **EM Endcap**: Pb/W/Cu + Si
- **Front Hadronic endcap**: SS + Si
- **Backig Hadronic endcap**: brass + plastic
- **Hexogonai silicon sensors**
 - 100/200/300μm thick: per radius
 - CO2 cooling to operate at -30C to minimize radiation damage

Leakage current @ 1000V
Calorimetry Upgrade: Performance

Results shown for barrel calorimetry upgrade: HGCAL results in progress

- **H → γγ:**
 - Precision timing improves vertexing resolution;
 - Expect degrade in energy resolution

- **H → ττ:**
 - Maintain performance for mass resolution at HL-LHC vs Run2

- Good jet performance: significant improvement with upgrades
- PUPPI works well for PU mitigation
- Aging effect minimal w/ recalibration
HL-LHC Upgrade: Muon System

Muon system upgrade scope for HL-LHC:
• Existing detectors:
 • upgrade barrel DT and endcap CSC electronics for 40MHz readout
• Extend forward coverage:
 • GEM & RPC detectors: 1.6<\eta<2.4
 • ME0 (for trigger): 2.4<\eta<2.9

Standalone muon trigger at L1:
• Keep rate under control:
 • single muon threshold 20-25GeV @ HL-LHC
• Provide good resolution and efficiency
• Provide capabilities not covered by L1 track trigger, e.g. displaced tracks & slow moving particles
Muon Upgrade: Performance

Improved performance with HL-LHC upgrade:
- Higher efficiency: minimal dependency on pile-up
- Lower rate: better measurement \rightarrow much purer sample
- Improved timing resolution w/ electronics upgrade
 - 12.5 ns \rightarrow 1 ns in DT
- Extended forward coverage: $|\eta|<2.4$ \rightarrow $|\eta|<2.8$
- Benefits from the L1 track trigger for prompt muons

Prospects on LLP searches:
See Henning Keller’s excellent talk on Wednesday!
• Calorimeter upgrades (ECAL electronics + HGCAL) will provide precise (a few 10s of ps) timing for high energy photons in barrel and high energy hadrons/photons in endcap
• Additional timing layer (outside tracker volume) can provide precision timing for charged hadrons & converted photons down to a few GeV.
• Traditional 3D vertex fit upgraded to a 4D fit
Timing Upgrade: LLP Prospects

(Illustrations c/o A. Ledovskoy)
For more info, see dedicated talk later today!

Scenario 1: Long-lived particle (neutral or charged) is produced at IP, & at secondary vertex (SV), decays into two observable particles (neutral or charged). With timing info (t1,2→T1,2; T0=T1=T2) the scenario has unique solution for SV → full reconstruction!

Scenario 2: LLP decays to visible + invisible particles. If the invisible particle mass is known + additional timing info → enough constraints for unique solution → applicable for GMSB, iDM dark photon etc.
HL-LHC Upgrade: Trigger

- **L1 Trigger:**
 - Increase output: $100\text{kHz} \to 750\text{kHz}$,
 - Increase latency: $3.4\,\mu\text{s} \to 12.5\,\mu\text{s}$
 - New track trigger at L1 (+ calo, muon, global)

- **High-Level Trigger:**
 - Processing power scales with pile-up and L1 rate
 - Output rate increase to 7.5kHz (up to 10kHz)
HL-LHC Upgrade: Timeline

- **Tracker TDR**
 - May 2017: pre-view document; end of June 2017: provide CMS approved version - including cost and responsibilities
 - Nov. 2017: final approval of the Tracker TDR

- **Barrel Calorimeters and Muons TDRs**
 - Sep. 2017: provide CMS approved TDRs - including cost and responsibilities
 - Feb. 2018: final approval of the BC and Muons TDRs

- **Endcap Calorimeter TDR**
 - Nov. 2017: provide CMS approved TDR - including cost and responsibilities
 - May. 2018: final approval of the Endcap Calorimeter TDRs

<table>
<thead>
<tr>
<th>Calendar Year</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>2026</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Shutdowns</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LS2</td>
<td></td>
<td></td>
<td>LS3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tracker: Pixel</td>
<td>… Proto. Engin.</td>
<td></td>
</tr>
<tr>
<td>Muons: GEM1</td>
<td>Engin.</td>
<td>ED/SR</td>
<td>Production - Assembly - Float</td>
<td>Install. Comm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions and Outlook

• The High-Luminosity LHC brings exciting physics potential #MoarData and many experimental challenges:
 – high radiation, high pile-up, high data-rate

• Comprehensive upgrade program to address these challenges and meet physics potential
 – improved spacial resolution: tracker; HGCAL; ...
 – increased forward coverage: pixel extension; muon; ...
 – improved timing information: HGCAL; MIP; electronics; ...
 – L1 tracking & other trigger/DAQ upgrades

• Higher luminosity + a more powerful machine + improved techniques \(\rightarrow\) new possibilities for LLP searches
THANK YOU!

Keep looking with a magnifying glass; you never know what you might find...