

CMS Upgrade for HL-LHC and Prospects for LLP Searches

Yangyang Cheng
LLP Workshop
October 20, 2017

Physics Beyond the (current) LHC

- The Standard Model (SM) works very well: too well?
- → SM does not explain everything: e.g. no Dark Matter candidate
- → Naturalness & low-mass of the Higgs boson suggest physics beyond the SM (BSM)

High Lumi-LHC: x100 LHC data at TeV scale

- Measure Higgs properties in detail
- Probe rare SM processes
- Search for new physics: none @LHC yet!

From the LHC to the HL-LHC

Challenges from HL-LHC

1e+07

1e+06

100000

10000

1000

100

10

Radiation Dose

Detector elements and electronics exposed to high radiation dose

→ limits equipment lifetime & degrades signal

7. 5 x 10³⁴ Hz/cm², Pile-up $<\mu>$ = 200

Pile-up

140 - 200 additional pp collisions on top of process of interest

Display of a 140 PU event

Year

HL-LHC Upgrade: Objectives

- Replace components:
 - parts too damaged by the time of HL-LHC
 - parts that will not survive HL-LHC environment
- Extend coverage:
 - tracker, muon extension etc.
- Improve function:
 - higher granularity pixels, endcap cal; L1 tracking etc.
- New detector(s):
 - Fast timing layer
- Increase bandwith:
 - trigger & DAQ

HL-LHC Upgrade: Overview

Trigger/HLT/DAQ

- Track information at L1-Trigger
- L1-Trigger: 12.5 μs latency output 750 kHz

HLT output ≃7.5 kHz

Barrel EM calorimeter

- Replace FE/BE electronics
- Lower operating temperature (8°)

Muon systems

- Replace DT & CSC FE/BE electronics
- Complete RPC coverage in region 1.5 < η < 2.4
- Muon tagging $2.4 < \eta < 3$

Replace Endcap Calorimeters

- Rad. tolerant high granularity
- 3D capability

+Timing layer (outside tracking volume)

Replace Tracker

- Radiation tolerant; high granularity
- Extend |η| coverage up to 4

Tracker Upgrade: Pixel

- new vs current pixel
- Radiation hardness w/ thinner pixels:
 - 285 μ m \rightarrow 150 μ m
- Improved resolution w/ smaller pixels:
 - also maintains occupancy ~ 0.1%
- Reduced material budget

Tracker Upgrade: OT & L1 Track Trigger

Yuri Gershtein's talk later today!

Tracker Upgrade: Performance

Tracking

Excellent tracking performance with increased coverage and better resolution!

Vertexing

Vertexing resolution almost independent of pile-up; longitudinal resolution only ~50% worse than transverse (with 25x100x150 pixels)

Tracker Upgrade: LLP Prospects

- Heavy stable charged particles (e.g. split SUSY): high dE/dx in silicon sensor
- Phase2 inner pixel has analogue readout:
 - 4 (maybe more?) bit time-over-threshold info provides good resolution
- Phase2 outer tracker has digital readout + dedicated overthreshold bit (HIP flag)
 with programmable threshold (currently set at 1.4MIP)

Good separation between background and signal in dE/dx and number of overthreshold clusters per track

Calorimetry Upgrade: Barrel

- The crystals in the ECAL will be kept for duration of LHC
- The **FE & BE electronics will be replaced** for more precise timing, useful in both pile-up mitigation and searches for new physics
- Target (hardware fundamental limit): ~30ps for E >
 ~30GeV (1/10 of current limit)
- Current studies on HCAL Barrel radiation damage suggest no need for replacement at HL-LHC: pending further study

Expected dose in HCAL Barrel at HL-LHC, in 4500fb-1 ultimate scenario

Calorimetry Upgrade: Endcap

- EM Endcap: Pb/W/Cu + Si
- Front Hadronic endcap: SS + Si
- Backing Hadronic endcap: brass + plastic
- Hexogonal silicon sensors
 - 100/200/300µm thick: per radius
 - CO2 cooling to operate at -30C to minimize radiation damage

Leakage current @ 1000V

The endcap calorimeter will be replaced with a siliconbased calorimeter:

- high granularity and 3D imaging to help mitigate PU
- Fast signal collection (<10ns) and fast timing capability (few tens of ps)
- → 4D info in space-time to reconstruct showers

Calorimetry Upgrade: Performance

Results shown for barrel calorimetry upgrade: HGCAL results in progress

- Good jet performance: significant improvement with upgrades
- PUPPI works well for PU mitigation
- Aging effect minimal w/ recalibration

HL-LHC Upgrade: Muon System

Standalone muon trigger at L1:

- Keep rate under control:
 - single muon threshold 20-25GeV @ HL-LHC
- Provide good resolution and efficiency
- Provide capabilities not covered by L1 track trigger, e.g. displaced tracks & slow moving particles

Muon system upgrade scope for HL-LHC:

- Existing detectors:
 - upgrade barrel DT and endcap CSC electronics for 40MHz readout
- Extend forward coverage:
 - GEM & RPC detectors: 1.6<η<2.4
 - ME0 (for trigger): 2.4< η<2.9

PU = 50, 14 TeV

Muon Upgrade: Performance

Improved performance with HL-LHC upgrade:

- Higher efficiency: minimal dependency on pile-up
- Lower rate: better measurement → much purer sample
- Improved timing resolution w/ eletronics upgrade
 - 12.5 ns → 1ns in DT
- Extended forward coverage : $|\eta| < 2.4 \rightarrow |\eta| < 2.8$
- Benefits from the L1 track trigger for prompt muons

Prospects on LLP searches:
See Henning
Keller's
excellent talk
on Wednesday!

HL-LHC Upgrade: Fast Timing

 Calorimeter upgrades (ECAL electronics + HGCAL)
 will provide precise (a few 10s of ps) timing for high energy photons in barrel and high energy hadrons/photons in endcap

• Additional timing layer (outside tracker volume) can provide precision timing for charged hadrons & converted photons down to a few GeV.

• Traditional 3D vertex fit upgraded to a 4D fit

Timing Upgrade: LLP Prospects

(Illustrations c/o A. Ledovskoy) For more info, see dedicated talk later today!

Scenario 1: Long-lived particle (neutral or charged) is produced at IP, & at secondary vertex (SV), decays into two observable particles (neutral or charged) \rightarrow With timing info (t1,2 \rightarrow T1,2;

T0=T1=T2)

the scenario has unique solution for SV → full reconstruction!

Scenario 2: LLP decays to visible + invisible particles. If the invisible particle mass is known + additional timing info → enough constraints for unique solution \rightarrow applicable for GMSB, χ_2 iDM dark photon etc.

HL-LHC Upgrade: Trigger

- L1 Trigger:
 - Increase output: 100kHz→750kHz,
 - Increase latency: 3.4μs → 12.5μs
 - New track trigger at L1 (+ calo, muon, global)
- High-Level Trigger:
 - Processing power scales with pile-up and L1 rate
 - Output rate increase to 7.5kHz (up to 10kHz)

HL-LHC Upgrade: Timeline

Tracker TDR

- May 2017: pre-view document; end of June 2017: provide CMS approved version including cost and responsibilities
- Nov. 2017: final approval of the Tracker TDR

Barrel Calorimeters and Muons TDRs

- Sep. 2017: provide CMS approved TDRs including cost and responsibilities
- Feb. 2018: final approval of the BC and Muons TDRs

Endcap Calorimeter TDR

- Nov. 2017: provide CMS approved TDR including cost and responsibilities
- May. 2018: final approval of the Endcap Calorimeter TDRs

Conclusions and Outlook

- The High-Luminosity LHC brings exciting physics potential #MoarData and many experimental challenges:
 - high radiation, high pile-up, high data-rate
- Comprehensive upgrade program to address these challenges and meet physics potential
 - improved spacial resolution: tracker; HGCAL; ...
 - increased forward coverage: pixel extension; muon; ...
 - improved timing information: HGCAL; MIP; electronics; ...
 - L1 tracking & other trigger/DAQ upgrades
- Higher luminosity + a more powerful machine + improved techniques → new possibilities for LLP searches

THANK YOU!

Keep looking with a magnifying glass; you never know what you might find...