Searching for dark sector parton showers at the LHC

Siddharth Mishra-Sharma Princeton University

Based on work with: T. Cohen, M. Lisanti and H.K. Lou [1707.05326]

LHC LLP Workshop October 20, 2017

"WIMP" Signals

New physics in Jets + \mathbb{Z}_T

Alwall, Le, Lisanti, Wacker [arXiv:0809.3294]
Alwall, Schuster, Toro [arXiv:0810.3921]
LHC New Physics Working Group [arXiv:1105.2838]

Fox, Harnik, Kopp, Tsai [arXiv:1109.4398] Rajaraman, Shepherd, Tait, Wijangco [arXiv:1108.1196]

Backgrounds in WIMP searches

QCD background:

 E_T from jet mismeasurement.

Background \mathbb{Z}_T aligned with jets.

Cut on
$$\min\left[\Delta\phi(\mathrm{jets},\cancel{E}_T)\right]\gtrsim0.4$$

Dark shower

Signature made classic by "Hidden Valley" models.

Strassler, Zurek [arXiv:hep-ph/0604261]

Jet of visible matter and dark matter: "semi-visible" jet

Anatomy of a semi-visible jet

WIMP vs Semi-visible jet distributions

 $\not\!E_T > 800 \text{ GeV}$ $\min \left[\Delta \phi(\text{jets}, \not\!E_T) \right] \gtrsim 0.4$

Efficiencies:

 $\sim 40\%$ WIMP

 $\sim 1\%$ Semi-visible jets

No stone unturned

Want to ensure discovery of new physics.

Nothing stopping the dark sector from being complicated.

Goal: minimal parametrization to cover broad class of models.

Portals

Simulation: Pythia8 hidden valley module (modified to include running couplings) piped through DELPHES (CMS card) at 13 TeV.

Parameterization: α_d

Dark quark coupling strength: parameterizes "strength" of shower

S. Mishra-Sharma I LHC LLP Workshop

Parameterization: r_{inv}

Invisible ratio: parameterizes ratio of invisible to total number of hadrons

Totally visible decays

Monojet-like

Parameter summary

+ dark quark mass, m_d

Number of dark mesons / event:

Contact operator search

Follow "mono-X" strategy.

Focus on the vector-vector contact operator:

$$\frac{1}{\Lambda^2} \left(\bar{q} \gamma^\mu q \right) \left(\bar{\chi} \gamma_\mu \chi \right)$$

Then UV complete into model with s- or t-channel exchange.

Distributions

Projected reach

		Contact operator										
		$\textbf{Signal}\;(r_{\mathrm{inv}})$			Background							
	Cuts	0.1	0.5	0.9	Z + jets	W^{\pm} +jets	$t\bar{t} + \text{jets}$	QCD				
	Trigger and presel.	2000[2.58]	4920[6.34]	2340[3.02]	2.3×10^5	2.5×10^5	6.9×10^4	5.7×10^4				
	$E_T > 800$	43[1.01]	174[3.94]	108[2.49]	1160	536	80	0				
Traditional	\longrightarrow $\Delta \phi > 0.4$	0[0]	31[0.89]	73[2.0]	1050	209	8	0				
	or	Low efficiency										
Reversed	$\Delta \phi < 0.4$	42[1.81]	142[5.57]	35[1.51]	110	326	72	0				

s-channel UV completion

$$\mathcal{L}_{s\text{-channel}} \supset -Z'_{\mu} \sum_{i,a} \left(g_q \, \overline{q}_i \gamma^{\mu} q_i + g_{\chi} \, \overline{\chi}_a \gamma^{\mu} \chi_a \right)$$

Looking for a resonance.

Di-jet like.

Jets are fatter than QCD jets.

Non-zero \mathbb{Z}_T (also washes out resonance).

Try the transverse mass:

$$M_T^2 = M_{jj}^2 + 2\left(\sqrt{M_{jj}^2 + p_{Tjj}^2} \mathbf{E}_T - \vec{p}_{Tjj} \cdot \mathbf{E}_T\right)$$

Cohen et. al. [1503.00009]

Cuts

- lacksquare Reclusters jet into $R=1.1\,$ C/A jets $(j_1,\,j_2)\,$.
- $\qquad \text{Require} \left| \eta_{j_1} \eta_{j_2} \right| < 1.1$
- $\qquad \text{Require } \Delta \phi < 1 \quad .$
- Veto isolated e^{\pm}/μ^{\pm} with $p_T>20~{
 m GeV}$ and $|\eta|<2.4$.
- Require $\mathbb{Z}_T/M_T > 0.15$

Then bump hunt in M_T :

Projected reach

Dedicated search beats contact operator search

t-channel UV completion

$$\mathcal{L}_{t\text{-channel}} \supset \sum_{i,j,a,b} \lambda_{ijab} \, \overline{\chi}_a \, \Phi_{bi}^* \, q_{Rj}$$

Variety of production modes — details in paper!

Similar
benchmark
strategy to
contact
operator case

$t ext{-} ext{CHANNEL}$												
	Signal (r_{inv})	$, M_{\Phi} [\mathrm{GeV}])$	Background									
Cuts	(0.5, 1500)	(0.9, 2000)	Z + jets	$W^{\pm} + \text{jets}$	$t\overline{t} + \mathrm{jets}$	QCD						
Trigger and presel.	2091[2.7]	467[0.6]	2.3×10^5	2.5×10^5	6.9×10^4	5.7×10^4						
$\not\!\!E_T > 800$	50[1.17]	96[2.22]	1160	536	80	0						
$\Delta \phi > 0.4$	13[0.38]	64[1.77]	110	326	72	0						
or												
$\Delta \phi < 0.4$	36[1.57]	31[1.35]	1050	209	8	0						

Direct detection

Weakly coupled DM

Direct detection fully correlated with LHC signatures.

$$\frac{1}{\Lambda^2} (\bar{q} \gamma^{\mu} q) (\bar{\chi} \gamma_{\mu} \chi) \qquad \qquad \frac{1}{\Lambda^2} (\bar{q} \gamma^{\mu} q) (\bar{\chi} \gamma_{\mu} \chi)$$

Composite DM

Direct detection depends on UV completion.

$$\frac{1}{\Lambda^2} (\bar{q} \gamma^\mu q) (\bar{\chi} \gamma_\mu \chi) \qquad \qquad \qquad \frac{1}{\Lambda_{\rm DD}^2} (\bar{q} \gamma^\mu q) (\bar{\pi}_d \gamma_\mu \pi_d)$$

 χ are dark quarks.

 π_d are dark mesons.

Implication: s-channel model has vanishing DD (to leading order)!

Conclusions

Strongly coupled dark sector could yield semi-visible jets.

Useful parametrization of dark sector properties: $\left(\Lambda_d, M_d, r_{\mathrm{inv}}\right)$

Many portal possibilities:

Contact operator limit s/t-channel

Direct detection depends on UV completion

Simplified parametrization allows for optimization, and useful way to present limits.