

SUEPs* to Jets:

Parameterizing the Theory

Cari Cesarotti
Harvard University
In Collaboration with Matt Reece, Matt Strassler
LLP Trieste, October 202017

Dark Shower Phenomenology

- Weakly couple to SM via mediator (scalar, Z')
- Could be complicated non-abelian theory
- Could be jetty or spherical, or in between
- GOALS:
- Build a toy model
- Interpolate between jets and SUEPs
- Start conversation with experimentalists

Event Shapes

- Jetty Events \rightarrow Weak coupling (QCD)
- SUEPy Events \rightarrow Strong Coupling
- Intermediate regime?

hep-th/0209211
hep-th/0803.1467
10/20/17

Event Shapes

- Jetty Events \rightarrow Weak coupling (QCD)
- SUEPy Events \rightarrow Strong Coupling
- Intermediate regime?

hep-th/0209211
hep-th/0803.1467
10/20/17

Event Shapes

- Jetty Events \rightarrow Weak coupling (QCD)
- SUEPy Events \rightarrow Strong Coupling
- Intermediate regime?
M. Adersberger, J. Beacham, M. Buschmann, J. Evans, M.

Freytsis, S. Knapen, D. Linthorne, S. Renner, P. Schwaller,
J. Scholtz, J. Shelton, D. Stolarski, D. Walker, ...
jaty
Guent Sherpes
SUEPY

Event Shapes

- Jetty Events \rightarrow Weak coupling (QCD)
- SUEPy Events \rightarrow Strong Coupling
- Intermediate regime?

hep-th/0209211
hep-th/0803.1467

AdS/CFT Correspondence

AdS
(toy)
Slice in AdS_{5} Bulk scalar field Kaluza-Klein Modes

CFT
(want to understand)
4D Confined Theory
Field operators
Hidden Sector Hadrons

Extra Dimensions

- Toy to build intuition for SUEP-to-Jet problem
- Extra finite $5^{\text {th }}$ dimension $\left(x^{\mu}, z\right)$
- Warp space with $\Lambda_{5}<0 \rightarrow$ AdS (RS1)
- Boundary on interval: UV, IR cutoffs
- AdS/CFT to calculate hidden sector dynamics

$$
d s^{2}=\left(\frac{R}{z}\right)^{2}\left(\eta^{\mu \nu} d_{x_{\mu}} d x_{\nu}+d z^{2}\right)
$$

Kaluza-Klein (KK) Modes

- Solve EOM for scalar field on bulk (5D)

$$
\Phi\left(x^{n}, z\right)=\sum_{n} \phi_{n}\left(x^{n}\right) \psi_{n}(z)
$$

- Up to quadratic Lagrangian

$$
\mathcal{L}_{5}^{\text {(ame) }}=-g_{\mu \nu} J^{\prime \prime} \Phi \partial^{\prime \prime} \Phi-m_{5}^{2}|\Phi|^{2}
$$

- Study $5^{\text {th }}$ dim effects (KK modes) on 4D theory

$$
\begin{aligned}
\mathcal{Z}_{\text {int }} & >-\frac{g_{t} \phi_{i} \phi_{j} \phi_{k}}{} \\
& =-\frac{q_{j}}{5!} \phi_{i} \phi_{j} \phi_{k} \int_{z_{m}}^{z_{i n}-g} 1 z \psi_{i} \psi_{j} \psi_{k}
\end{aligned}
$$

KK Modes \rightarrow Jetty or SUEPy

- Interactions to shift from sphere to jet
- Intuition: breaking of KK Number conservation makes jettier events
- Flat Space: KK-modes are cosines
淠彦

$$
\begin{array}{r}
\int d z \psi_{n}(z) \psi_{m}(z) \psi_{p}(z)=0 \\
\text { for } n \neq m+p
\end{array}
$$

- KK number ' n ' is conserved
- No phase space left

KK Modes \rightarrow Jetty or SUEPy

$$
\begin{gathered}
\psi_{n}(z)=z^{2} A_{n} J_{v}\left(m_{n} \cdot z\right) \\
\int_{z_{w}}^{z_{1 R}} \sqrt{-g}\left|\psi_{n}(z)\right|^{2} d z=1 \\
\left\{K K \operatorname{Mode} \psi_{n}(z)\right\}
\end{gathered}
$$

$n=1$
$n=5$
$n=25$

- Mass spacing ~ linear
- cubic interaction ~ KK number conserving
- Soft decay daughters \rightarrow SUEPy shape

Sphericity of KK Modes

Sphericity of KK Modes

KK Modes - Cubic Interaction

KK Modes - Cubic Interaction

 $$
\text { Starting at KK \# = } 50
$$

KK number is almost conserved \rightarrow higher sphericity

KK Modes \rightarrow Jetty or SUEPy

- Interactions that break KK number
- Competing effects: phase space vs. coupling
- Idea: put interactions on z_{IR} boundary

KK Modes - Localized Interaction

7.5×10^{3} Trials
Starting at KK \# = 50

Sphericity

KK Modes - Localized Interaction

7.5×10^{3} Trials
Starting at KK \# = 50

Conclusions \& Outlook

- Toy provides event shape interpolation
- LHC signatures are dependent on the mediator physics
- Tool to understand shower dynamics for hidden sector
- Theory and experiment

Questions?

Backups

KK Modes - Multiplicity?

$$
\sum_{5}^{i n t} \sum_{3!}^{9} \Phi^{3}
$$

$$
\mathcal{L}_{5}^{i n t}>-\left.\frac{9}{3!} \underline{\phi}^{3}\right|_{z=z_{I R}}
$$

\# Particles in Shower

Dark Showers

- Strassler \& Zurek 2006
- SM weakly coupled to strongly interacting dark sectors

hep-ph/0604261

Dark Hadrons?

- QCD is very special
- Color neutral final states \rightarrow reorganization
- To Consider:
$-p_{\text {parton }}^{\mu} \sim p_{\text {jet }}^{\mu}$
- hadrons

AdS / CFT

- $\mathrm{AdS}_{5} \times X_{5}$
- 10D masses \rightarrow compactify to 5D masses
- Fewer dimensions \rightarrow denser mass states
- More bulk scalar fields \rightarrow closer to confining theory

