

summary and taking stock

2nd LHC LLP Community Workshop - 20 October 2017

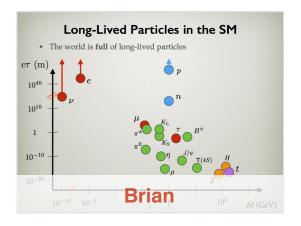
Sascha Mehlhase (LMU Munich)

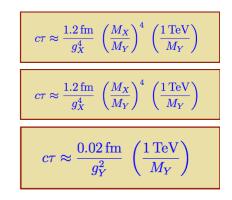
quick summary

- providing context
- experimental status quo
- quick reminder of why we're here
- first glimpse of how to reinterpret

- the complexity of simplification
- reiteration on reinterpretation
- mind the gap

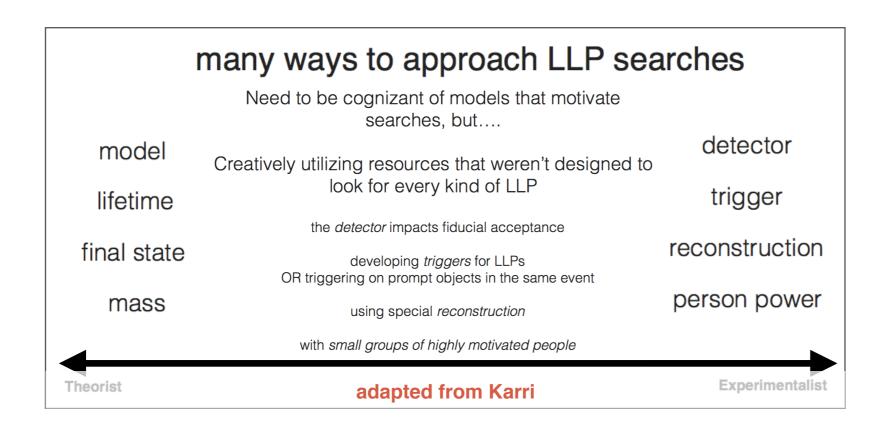

- trigger upgrade and upgrade trigger ideas
- taste the dark side

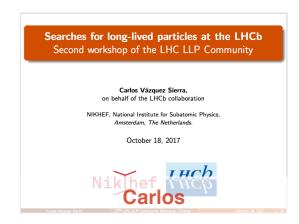

and of course lightning rounds

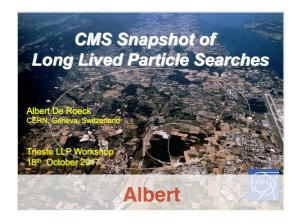


context and motivation

- theorists think it's interesting
- it's something we can do
- it addresses fundamental questions
- it's challenging and fun
- LLPs exist in the Standard Model (SM), so why not in anything beyond the SM
- Plethora of possibilities SUSY-like theories, Higgs-portal theories, gauge-portal theories, Dark Matter theories, heavy-neutrino theories (grouped as in white-paper draft)

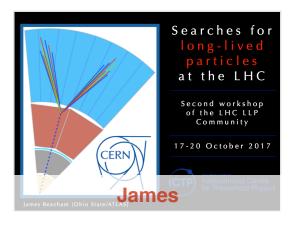


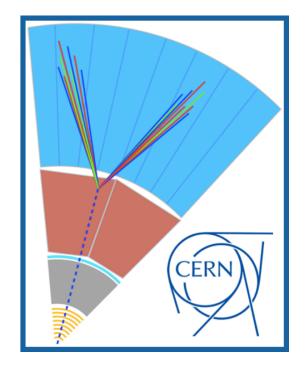



LLP Scenario	m _H	BAU	DM	m_{ν}
RH Neutrinos	×	~	V	V
WIMPY baryogenesis	*	~	?	*
Dark QCD	×	~	~	*
Stealth SUSY	~	~	~	×
Neutral Naturalness	~	*	*	*
Dark U(1)	×	×	~	×

experimental status quo

- all three experiments ...
 - have a comprehensive (and growing) search programme
 - have updated and/or new searches in the pipelines
 - (will / plan to) have new detectors improving sensitivity for LLP searches
 - have and/or plan dedicated triggers for LLPs





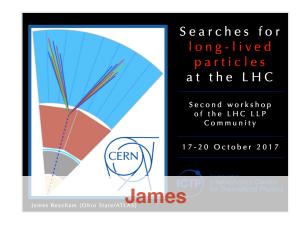
quick reminder of why we're here

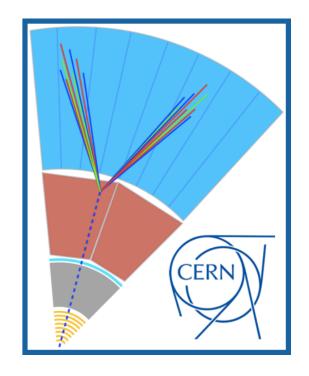
- simplified models
 - ready for use by experiments? what's missing?
- experimental coverage
 - map out what gaps exist that should motivate new, improved, and/or expanded searches?
- recasting and re-interpretation
 - provide recommendations
 - demonstrate usefulness and necessity of detector collaboration controlled frameworks like RECAST to work in conjunction with and in parallel to re-interpretation tools

Workshop goal:

Map the future.

You're doing it


right now.


quick reminder of why we're here

- trigger, upgrades and beyond
 - what (type of) triggers are we missing?
 - what studies have been performed to support possible detector upgrades?
 - what are prospects, challenges, and opportunities of a high luminosity or high energy (~25 TeV) LHC?

Dark showers

- how do we know what we don't know?
- how do we interpolate between pencil-like jet regime and soft radiation patterns, w.r.t.
 - theory/pheno (generators, event shape variables, etc.) and in the detector (how do we trigger on these and ID them)?

Workshop goal:

Map the future.

You're doing it

right now.

the complexity of simplification

- defining a framework of simplified models
 - compromise between minimal set and coverage
 - broadly applicable to different types of models
 - main focus on studies of coverage and generating search ideas, rather than utilising extensive reinterpretations
 - factorise production and decay (where possible)
 - theory-driven signatures
 (one analysis might cover several channels)
- limited set of 'umbrella' UV models
 - SUSY-like theories, Higgs-portal theories, gauge-portal theories, Dark Matter theories, heavy-neutrino theories
- production and decay modes
 - direct pair production, heavy-parent production, Higgs production, resonance production, charged-current production
 - di-photon, single photon, fully hadronic, semi-leptonic, leptonic, flavoured leptonic (+ invisible)

SIMPLIFIED MODELS FOR LONG-LIVED PARTICLE SEARCHES

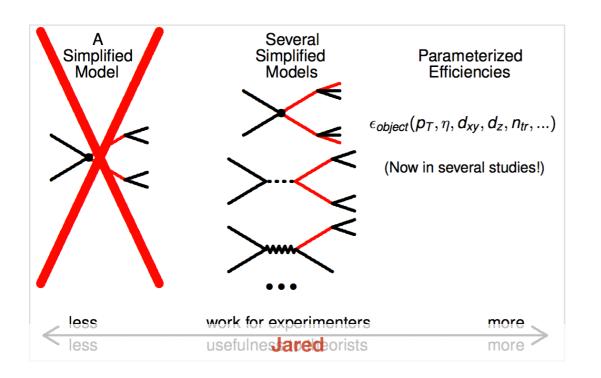
On behalf of the simplified models WG organizers & chapter ontributors: James Beacham, Oliver Buchmueller, Giovanna Cottin David Curtin, Jared Evans, Lukas Heinrich, Zhen Liu, Matthew McCullough, Michael Ramsey-Musolf, Jessie Shelton, BS

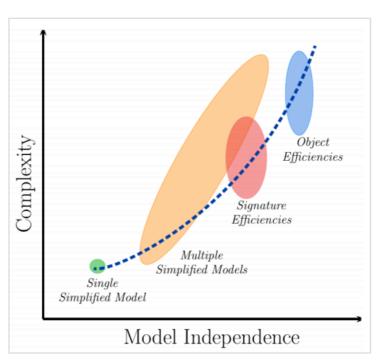
Brian Shuve — Harvey Mudd College

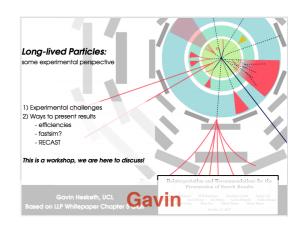
Decay	$\gamma\gamma(+inv.)$	$\gamma + inv.$	ii(+inv.)	
Production	/ /(rmv.)	/ i niv.	JJ(THIV.)	
DPP: sneutrino pair		SUSY	SUSY	
HP: squark pair, $\tilde{q} \rightarrow jX$		SUSY	SUSY	
or gluino pair $\tilde{g} \rightarrow jjX$				
HP: slepton pair, $\tilde{\ell} \to \ell X$		SUSY	SUSY	
or chargino pair, $\tilde{\chi} \to WX$				
HIG: $h \rightarrow XX$	Higgs, DM*		Higgs, DM	
or $\rightarrow XX + inv$.				
HIG: $h \rightarrow X + inv$.	DM*		DM*	
$ZP: Z(Z') \rightarrow XX$	Z', DM*		Z', DM*	
or $\rightarrow XX + inv$.				
$ZP: Z(Z') \rightarrow X + inv.$	DM		DM	
CC: $W(W') \rightarrow \ell X$			RHν*	

Production Decay	$\ell+{ m inv.}$	jj(+inv.)	jjℓ	<i>ℓγ</i>
DPP: chargino pair	SUSY	SUSY	SUSY	
or slepton pair				
HP: $\tilde{q} \rightarrow jX$	SUSY	SUSY	SUSY	
$ZP: Z' \to XX$	Z', DM*	Z', DM*	Z'	
CC: $W' \rightarrow X + inv$.	DM*	DM*		

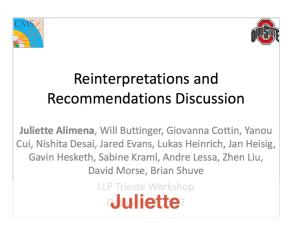
Production	j + inv.	jj(+inv.)	jℓ	jγ
DPP: squark pair or gluino pair	SUSY	SUSY	SUSY	

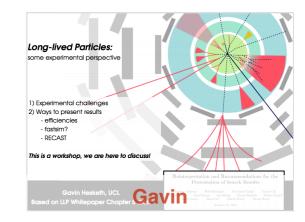

the complexity of simplification

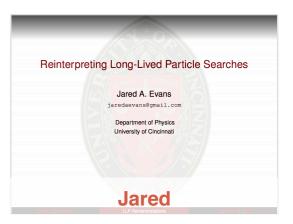

discussion

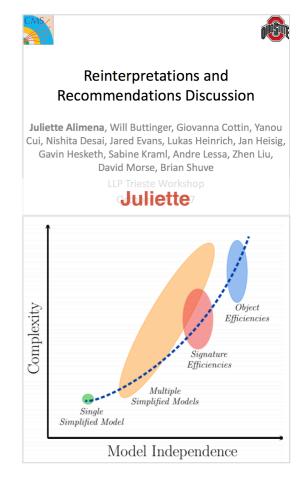

- make sure tables are not misunderstood, not to discourage analysis efforts
 - empty cells might still be interesting and filled over time
- emphasise usefulness of prompt objects
 - will have an impact on sensitivity / trigger / ...
- technical issues with GEANT4 interfaces (e.g. R-Hadron decays in Pythia)
 - can we generalise this for any BSM particle?
 - is / should it implemented similar in all experiments?
- be cautious / honest
 - simplified-model results can be misleading and might suggest coverage we don't actually have looking at complete models
 - factorisation does not work for all cases (hadronisation)
- connection to trigger effort
 - which benchmark models can be triggered and how?
 - do we want it in this section? probably not!?
- connection to coverage / reinterpretation effort
 - which benchmark models are covered and/or to which extend or could be by reinterpretation?
 - do we want it in this section? probably not!?
- are we ready to use this *minimal* set?
 - maybe from the theory side (did we miss anything)!?
 - maybe not entirely on the technical side!?
- current version of the white-paper section


reiteration on reinterpretation


- difficulties in recasting / reinterpretation
 - changing the model can completely change the analysis (different lifetime/decay → different experimental signature)
 - high-level efficiencies (on top of standard ones)
 - hard/impossible to interpolate between models/analyses
 - risk of dangerously uncontrolled extrapolations
 - along what axes could searches lose sensitivity?
 (how to address this with our set of simplified models)
 - it can easily get very complex






reiteration on reinterpretation

discussion

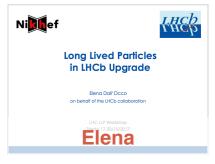
- keeping extrapolations under control may sometimes require information that cannot realistically be acquired
 - maybe the ATLAS DV+MET exercise is a good compromise? restrict results to some fiducial volume, evaluate efficiency dependencies, state numbers as function of relevant (three) variables, integrate over others (or adjust fiducial volume)!?
- experiments should limit need to recast via judicious choice of benchmarks clearly illustrating where sensitivity will fail
- clear information about limitations will spur innovation
- prompt search sensitivity to LLPs should be illustrated
- make it more obvious where to find data for reinterpretation
 - we do have links to auxiliaries and HEPdata on the arXiv page!?
- connection to simplified-model effort
 - is it worth producing efficiency tables for one/two/many models?
 - how do we choose the one/two? need case-by-case input from theory!?
 - is it worth doing the exercise of fully processing one simplified models close to the complete model used in an existing analysis!?

mind the gap

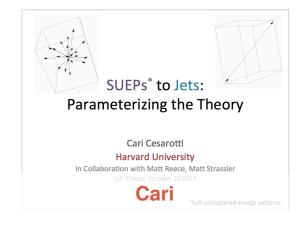
- goals of the effort
 - identify most obvious coverage gaps of current searches
 - byproduct concise summary of searches, inviting to challenge the shortcomings and caveats
- classification of searches by final states
 - fully hadronic, leptonic, semi-leptonic, photonic
- current status
 - already broad overview of existing searches, providing essential information for the non-expert reader, and refer the avid one to the original publications
 - not the whole landscape covered here: heavy neutral leptons, magnetrons, kinked tracks, fractionally(milli) charged particles, emerging jets, ...
 - need to discriminate between intrinsic limitations and possible improvements: EXP feedback needed!

mind the gap

- discussion
 - why do/did we not consider hidden-valley signatures
 - b did we find out yet? does it make sense not to discuss them here at all?
 - what about searches without weak points
 - make sure not to send the wrong message
 - still worth pursuing/improving
 - try to provide (more) overview/summary plots
 - both from within the experiments and merging those?!
 - comparisons between experiments using benchmark point!?
 - make sure all results are based on same/similar assumptions!
 - connection to simplified-model effort
 - can/should we (try to) give examples or a list of simplified models are covered (to which extend)
 - how to present this material
 - library/webpage/catalog with all searches linked (à la HXSWG)


trigger upgrade and upgrade trigger ideas

- comprehensive overview of challenges and possibilities for HL-LHC from all three experiments
- some really nice ideas/applications in the pipeline
 - e.g. (downstream) track triggers, hit-count trigger, timing detectors, combined-calo-HGTD trigger, no trigger*,
 4D-vertexing,
- discussion
 - make sure to give input to decision-making process



^{*} at least not in hardware

taste the dark side

- extreme cases (jetty and SUEPy) are somewhat under control using PythiaHV and handmade LHEs
- working on solutions for the transition region
 - how do we actually validate predictions?
- how about the experimental side?
 - still have a few open items from previous workshop :(

general discussion

- need to define and work on overlap/interaction between working groups
 - maybe it's worth compiling a current version of a complete draft for people to read
- what to do about backgrounds
 - several people mentioned it might be good to document something!?
- dedicated experiments
 - how, where and when to incorporate?

last but not least

- repeating and adding to what was said during the conference dinner
 - thanks to everyone for joining / taking part / contributing, but especially to ICTP, Bobby, Albert, Brian and James for hosting, supporting and organising this workshop

