Potential Trigger Improvements with FTK at ATLAS

Lesya Horyn
University of Chicago
Overview

• Thank you to Tova for nice overview of FTK!

• This talk will:
 ‣ Give an overview of the baseline improvements to searches with FTK
 ‣ Present some ideas about how to improve triggers used for LLP searches using FTK
 ‣ Start a discussion about how we can expand the use of track triggers to tailor to LLP searches
The Fast TracKer (FTK)

• FTK is an upgrade to the trigger system that will reconstruct all tracks in all events passing the L1 trigger before the High Level Trigger

• Tracking in the trigger has two broad advantages:
 ‣ Mitigate of the effects of pileup
 • Helps reconstruct MET, improves jet resolution, etc
 ‣ Identify particles with track based signatures
 • Notably, b-jets and taus.

• The above are arguably the most limited in ATLAS’ current trigger system and are central to many searches for new physics
Sampling of Current Trigger Limitations

• Combinatoric challenge of tracking means it is CPU intensive and can only be done in Regions of Interest (ROIs) seeded by the L1 trigger

• Limitations:
 ‣ Size of ROI
 • e.g. for taus, HLT performs track reconstruction in ROI $\Delta \eta \times \Delta \varphi = 0.4 \times 0.4$
Sampling of Current Trigger Limitations

• Combinatoric challenge of tracking means it is CPU intensive and can only be done in Regions of Interest (ROIs) seeded by the L1 trigger

• Limitations:
 ‣ Size of ROI
 ‣ Number of tracks that can be reconstructed (speed of track reconstruction algorithm)

88 % of time used for tau trigger in HLT spent on tracking!

lots of potential for time saved with free tracks!!!
Sampling of Current Trigger Limitations

• Combinatoric challenge of tracking means it is CPU intensive and can only be done in Regions of Interest (ROIs) seeded by the L1 trigger

• Limitations:
 ‣ Size of ROI
 ‣ Number of tracks that can be reconstructed (speed of track reconstruction algorithm)

Tracking uses a lot of the CPU of the HLT.
Having all tracks at the start of the HLT gives us more freedom in our event selection
Baseline FTK Improvement

FTK reconstructs all tracks in all events passing L1 trigger in ~.1 ms

• What do we get for free from FTK?
 ‣ Tracking information for lower p_T objects down to track $p_T > 1$ GeV
 • Allows us to make better decisions within HLT rate constraints
 ‣ More detailed structure information to use during object energy calibrations
 ‣ Free up CPU for other calculations, not necessarily related to tracking

Good efficiency even at low p_T!
Example: Tau Triggers

- **Blue** shows improvement to tau turn on curve with FTK
- Primarily limited by L1
Baseline FTK Improvement

• Use tracks to identify specific topologies in HLT
 ‣ FTK gives us the ability to easily identify to the primary vertex and associate objects to it
 ‣ For example, devise a ditau selection based only on track signature
 ‣ Only limited by L1 efficiency
Using Other L1 Seeds

• Can use a different L1 trigger in an analysis to gain sensitivity where we previously had none

• Example:
 ‣ 30-ns R-hadron search where signature is MET + high \(p_T \) isolated track
 • L1 MET trigger, HLT track trigger
 ‣ Trigger on track, MET calculation will be uncorrelated with track
 ‣ Get free (limited) sensitivity in region between L1 and HLT
What if the FTK pattern bank includes displaced particles?
Displaced + Electrons

• Current prompt single electron selections:
 ‣ Level 1: $p_T > 22$ GeV
 ‣ HLT: $p_T > 60$ GeV

• For LLP searches, use photon trigger
 ‣ Level 1: $p_T > 22$ GeV (same as electron)
 ‣ HLT: $p_T > 140$ GeV
 ‣ More fakes in photon trigger \rightarrow increased rate \rightarrow higher p_T threshold

• Use FTK to identify displaced track, no longer HLT rate limited
 ‣ Get down to prompt electron p_T threshold!
Displaced + Muons

• Current prompt dimuon selections:
 ‣ Level 1: 2 objects $p_T > 15$ GeV
 ‣ HLT: 2 objects with $p_T > 14$ GeV

• For LLP searches, use “muon spectrometer only” trigger
 ‣ No dimuon trigger!
 ‣ Single muon spectrometer only
 • L1: $p_T > 20$ GeV
 • HLT: $p_T > 60$ GeV (vs $p_T > 26$ GeV with track)
 • Only in barrel region

• Use FTK to identify displaced track, reduce fake rate and create a more robust trigger selection
Displaced + Jets

• Currently just use multijet triggers

• No displaced specification possible

• Easy to imagine trigger with displaced identification from FTK tracks which uses same L1 multijet seed to dramatically decrease rate!
Limitations

- Final track fit of FTK requires 10/12 Pixel+SCT layers to have a hit
- So sensitivity limited to particles which decay within roughly 44 cm (~1.5 ns)
- More detailed studies would have to be done to understand real gains and new regimes for LLP searches
- See Tova’s talk for more details on this
Conclusion

• FTK has the ability to improve searches broadly, so of course this propagates through to LLP searches

• Many more refined possibilities to be explored
 ‣ Adding displaced vertex/displaced track signatures into FTK pattern banks
 ‣ Using FTK tracks to improve current HLT triggers or devise new ones
 ‣ Be creative with trigger requirements in analyses to gain new sensitivity with access to global track reconstruction

Let’s brainstorm how we can use FTK and the trigger to improve LLP searches!
Backup
Sampling of Current Trigger Limitations

<table>
<thead>
<tr>
<th></th>
<th>Level 1 Selection</th>
<th>HLT Selection</th>
<th>Offline Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single tau</td>
<td>60 GeV</td>
<td>160 GeV</td>
<td>170 GeV</td>
</tr>
<tr>
<td>Single b</td>
<td>100 GeV</td>
<td>225 GeV</td>
<td>235 GeV</td>
</tr>
<tr>
<td>Two b</td>
<td>100 GeV</td>
<td>150, 50 GeV</td>
<td>160, 60 GeV</td>
</tr>
<tr>
<td>MET</td>
<td>50 GeV</td>
<td>110 GeV</td>
<td>200 GeV</td>
</tr>
</tbody>
</table>

High HLT selections vs L1 selection