Long-lived Particles: some experimental perspective - 1) Experimental challenges - 2) Ways to present results - efficiencies - fastsim? - RECAST This is a workshop, we are here to discuss! Gavin Hesketh, UCL Based on LLP Whitepaper Chapter 5 draft #### Reinterpretation and Recommendations for the Presentation of Search Results Juliette Alimena Will Buttinger Giovanna Cottin Yanou Cui Nishita Desai Jared Evans Jan Heisig Gavin Hesketh Sabine Kraml Andre Lessa Zhen Liu David Morse Brian Shuve October 15, 2017 # For details of experimental results, see: Carlos Sierra, Albert de Roeck, Karri di Petrillo https://indico.cern.ch/event/649760/timetable/ ## Experimentally, long-lived particles are an interesting challenge - use all parts of the detector - ...in ways they were not necessarily designed to be used! - requires different triggers, reconstruction, background estimates - ...depending on where the signal may appear images from Heather Russell # Charged LLPs, decaying outside detector: - signature similar to muons Can use **dE/dx** in muon system (ATLAS) or silicon (ATLAS & CMS) or **cherenkov radiation** in RICH (LHCb) #### Neutral LLPs, decaying outside the detector: - MET! Similar to dark matter searches # Charged LLPs, decaying inside detector: - disappearing or kinked track - requires dedicated tracking # In both cases, triggering is the challenge: need additional activity in the event mono-X style searches. # LLPs decaying to leptons in the tracker: displaces vertices or kinked tracks - CMS can identify large IP muons by default - retracking + Ecal/MS at ALTAS # Decays outside the tracker: - stand-alone muons, possibly + calo # Signatures can be resolved or boosted → "lepton jets" # Triggering again an issue: - IP requirements generally stricter in the trigger - specialised triggers needed if decay outside tracker # LLPs decaying to hadrons: - signature could be displaced multi-track vertex - + resolved jets (CMS, LHCb), or single boosted jet (ATLAS) - a jet with no tracks & low EMF - ATLAS can trigger on this signature - multi-track vertex in the muon system # **Emerging jets** - multiple displaced vertices # (very) late decays in the calorimeter - ATLAS and CMS look for jets in empty bunch crossings (neither beam in the detector) #### LLPs also come with a different mix of backgrounds beam-induced background cosmics displaced vertices from material interaction etc... #### Can lead to non-trivial event selection → and efficiencies that are not so trivial to parametrise From limits... # ...to reinterpretation: - 1) the event selection defining the signal region - 2) the event yield in the SR - 3) the background yields in the SR (+uncertainties) - 4) the signal yield in the SR, for which you need a model of the detector... - a parameterisation of the efficiency (in terms of..?) - fast-sim (possible for LLPs?) - full sim (see RECAST) Provided by experiments To discuss! # Searches usually focus on a particular signature, in a specific part of the detector - displaced muon tracks, displaced vertex in tracker, jet with no tracks, ...etc #### Changing the model can completely change the analysis! - different lifetime, decay model → different experimental signature #### So how to enable reinterpretation? Model Independence #### Provide efficiencies for a simplified model Model may depend on the analysis - eg decay mode of χ Limits & efficiencies as a function of - mass & lifetime of LLP #### Provides a single calibration point for reinterpretation - using the efficiencies, anyone can run the same model, and get the same limits - within the limits of the parametrisation... #### Reinterpreting the same model is not very interesting... #### Fairly high-level efficiencies - may not capture dependencies of efficiencies - hard/impossible to interpolate between different models - ... and between analyses #### Provide efficiencies for multiple simplified models? - allows testing of interpolation - and confidence in extrapolation | Production Decay | $\gamma\gamma(+ ext{inv.})$ | $\gamma + ext{inv.}$ | jj(+inv.) | jjℓ | $\ell^+\ell^-(+inv.)$ | $\ell_{\alpha}^{+}\ell_{\beta\neq\alpha}^{-}(+inv.)$ | |---|-----------------------------|-----------------------|------------|------|-----------------------|--| | Froduction | | | | | | , , | | DPP: sneutrino pair | | SUSY | SUSY | SUSY | SUSY | SUSY | | HP: squark pair, $\tilde{q} \rightarrow jX$ | | SUSY | SUSY | SUSY | SUSY | SUSY | | or gluino pair $\tilde{g} \rightarrow jjX$ | | | | | | | | HP: slepton pair, $\tilde{\ell} \to \ell X$ | | SUSY | SUSY | SUSY | SUSY | SUSY | | or chargino pair, $\tilde{\chi} \to WX$ | | | | | | | | HIG: $h \to XX$ | Higgs, DM* | | Higgs, DM* | | Higgs, DM* | | | or $\rightarrow XX + \text{inv.}$ | | | | | | | | HIG: $h \to X + \text{inv}$. | DM* | | DM* | | DM* | | | $ZP: Z(Z') \to XX$ | Z', DM* | | Z', DM* | | Z', DM* | | | or $\rightarrow XX + \text{inv.}$ | | | | | | | | $ZP: Z(Z') \to X + inv.$ | DM | | DM | | DM | | | CC: $W(W') \rightarrow \ell X$ | | | RHν* | RHν | RHν* | RHν* | | Production Decay | $\ell+{ m inv.}$ | jj(+inv.) | jjℓ | $\ell\gamma$ | |--------------------------------|------------------|-----------|------|--------------| | DPP: chargino pair | SUSY | SUSY | SUSY | | | or slepton pair | | | | | | HP: $\tilde{q} \rightarrow jX$ | SUSY | SUSY | SUSY | | | $ZP: Z' \to XX$ | Z', DM* | Z', DM* | Z' | | | CC: $W' \to X + inv$. | DM* | DM* | | | | Production Decay | j + inv. | jj(+inv.) | jℓ | jγ | |------------------|----------|-----------|------|----| | DPP: squark pair | SUSY | SUSY | SUSY | | | or gluino pair | | | | | **Problem:** generating samples, calculating & parametrising efficiencies on many models not simple... #### Simplified models and reinterpretation quite closely connected More discussion on simplified models to follow in Jared's talk #### Next step: - rather than the efficiency to select a given model... - ...provide efficiencies to select the experimental objects #### **Example 1:** CMS displaced electron + muon search - search for top squark pair production, decay to lepton+b-jet (only leptons used) - squark c_{τ} in range 1mm \rightarrow 1m Provided electron and muon efficiencies vs d0 or pT arXiv:1409.4789 (8 TeV) CMS-PS-EXO-16-022 (13 TeV) #### Closure test vs full analysis for various mass / lifetime benchmarks - closure at ~20% level # Reinterpretation (arXiv:1601.01326) - successful! Agrees within 25% #### Numbers for benchmark points agree well - though 8 TeV efficiencies may not be valid at 13 TeV | Lifetime | 1 mm | 10 mm | 100 mm | 1000 mm | |----------|---------------------------|------------------------|----------------------|------------------------------| | 8 TeV | | | | | | SR1 | $34.4 (30 \pm 5)$ | $28.3~(35\pm7)$ | $4.83 (4 \pm 1)$ | _ | | SR2 | $8.76 (6.5 \pm 1)$ | $24.6 (30 \pm 5)$ | $5.73 (5 \pm 1)$ | _ | | SR3 | $1.69~(1.3\pm0.3)$ | $53.6 (51 \pm 10)$ | $24.6 (26 \pm 5)$ | _ | | 13 TeV | | | | | | SR1 | $1.63 (3.8 \pm 0.2)$ | $4.39 (5.2 \pm 0.4)$ | $0.80~(0.8\pm0.1)$ | $0.0349 \ (0.009 \pm 0.005)$ | | SR2 | $0.312 \ (0.94 \pm 0.06)$ | $3.77 (4.1 \pm 0.3)$ | $1.53 (1.0 \pm 0.1)$ | $0.0700 \ (0.03 \pm 0.01)$ | | SR3 | $0.070~(0.16~\pm0.02~)$ | $5.30 \ (7.0 \pm 0.3)$ | $7.74 (5.8 \pm 0.2)$ | $0.523 \ (0.27 \pm 0.03)$ | arXiv:1504.05162 # ATLAS search for displaced vertex or displaced lepton pair - RPV or GGM (I+jets, dilepton+MET, jets+MET, ...) For efficiencies, displaced vertex is a much more complex object! #### Reinterpretation (arXiv1606.03099) with some success arXiv:1504.05162 # Needed to implement an approximate tracking efficiency: $$\varepsilon_{\rm trk} = 0.5 \times \left(1 - \exp\left(\frac{-p_T}{4.0 \text{ GeV}}\right)\right) \times \exp\left(\frac{-z_{\rm DV}}{270 \text{ mm}}\right) \times \max(-0.0022 \times \frac{r_{\rm DV}}{1 \text{ mm}} + 0.8, 0)$$ #### Vertex efficiency provided for one benchmark model (D.V. + muon) - did not extrapolate very well to other benchmark models in paper. - DV+MET, dilepton ## A vertex efficiency may not be enough: It "would be useful if ATLAS could provide three-dimensional interpolated efficiencies for tracks for different types of particles, possibly with an additional efficiency factor for the vertex depending upon the numbers and types of particles coming from it" #### A vertex efficiency may not be enough: It "would be useful if ATLAS could provide three-dimensional interpolated efficiencies for tracks for different types of particles, possibly with an additional efficiency factor for the vertex depending upon the numbers and types of particles coming from it" Since Monday: arXiv:1710.04901 https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-08/ # As provided efficiencies become more general... Is fast sim for LLPs possible? eg a particle decaying to electron (+ MET) looks very different if the decay is in the tracker... the hadronic calorimeter... the muon system... - will need input from many analyses - and be used with caution... Model Independence # It would also be very interesting to reinterpret prompt searches for LLPs - prompt searches have implicit constraints on lifetime - only really possible to reinterpret by rerunning the prompt analysis? - done by the prompt analysers, ...or with RECAST? #### CMS displaced di-lepton search (13 TeV) - top squark pairs → lepton pair (+2 b-jets) ## compared to search for (prompt) scalar leptoquarks - leptoquark pairs → 2 muons + 2 jets #### Running LLP signal sample through prompt search \rightarrow prompt search sets tighter limits for $c\tau < \sim 3$ mm # Some benchmark models could be run through any prompt analysis... - otherwise, getting relevant prompt analyses in RECAST may be the best option CMS-PAS-EXO-16-022 CMS-PAS-EXO-16-007 #### LLP searches tend to focus on experimental signatures rather than specific models - and reinterpretation is central to this idea #### Experiments recognise the importance, and want to provide useful information - already very active on reinterpretation, simplified models, ... - material for reinterpretation should be published & put on HEPData - though not generally provided for preliminary results #### LLP searches are a special case ... - very different experimental signatures, more challenging to parametrise ...but of course people will do it anyway! #### In the white-paper, collect experience trying to reinterpret: - Displaced leptons, jets, vertices, lepton-jets - Disappearing tracks, Heavy Stable Charged Particles, Non-pointing Photons - Prompt searches to set limits on LLPs - Developing fast-sim - → discussion on white-paper chapter tomorrow (in Trieste) # What should the experiments provide? #### This is probably a trade-off between what people want and what is realistic - ideally, efficiency maps for LLPs, vs mass/lifetime/decay mode of LLP - ie something approaching a fastsim for LLPs ...is not realistic in all cases - how is the provided information used, and what precision is needed? - this conversation needs to happen as early as possible... #### Simplified models are closely related - efficiencies for a single model, as a function of mass/lifetime (which model?) - with cutflows / yields for a couple of benchmark reference points? - efficiencies for a handful of models would allow easier interpolation - comparing several models may motivate a new analysis, trigger, #### In some cases, the object-based efficiencies are probably more useful - eg the ATLAS displaced vertex provides a vertex efficiency vs mass, #tracks - again, efficiencies for some simplified models/benchmarks needed? #### Reinterpreting prompt searches for LLPs: - benchmark simplified models to be tested with any relevant prompt searches? - priority list of prompt searches to include in RECAST?