CMS Timing

Alexander Ledovskoy ${ }^{1}$, Christopher Rogan ${ }^{2}$

${ }^{1}$ University of Virginia, USA
${ }^{2}$ University of Kansas, USA

on behalf of CMS MIP Timing Detector Group

Searches for long-lived particles at the LHC: Second workshop of the LHC LLP Community Oct 17-20, 2017, ICTP, Trieste, Italy

Upgrade of electromagnetic calorimeters

Barrel: New electronics, lower temperature

- Shorter pulse shaping
- Increased sampling rate $40 \mathrm{MHz} \rightarrow 160 \mathrm{MHz}$
- Noise term in timing resolution improves $\times 5$
- Expect photon timing of $\sim 30 \mathrm{ps}$ for $p=20 \mathrm{GeV}$ at the beginning of HL-LHC

Endcap: new calorimeter, HGCal

- Excellent intrinsic timing resolution for Si sensors for high amplitude signals
- Design to achieve ~ 50 ps resolution per layer in EM showers
- Multiple layers can be combined within a shower for better resolution
- Hadrons with sufficient high energy give good timing resolution

Timing resolution for photons of $\mathbf{2 0 - 3 0} \mathrm{GeV}$ is $\mathbf{3 0} \mathbf{~ p s}$

MIP timing detector (MTD)

- A thin LYSO+SiPM layer in the barrel, LGAD layer in the endcap
- Just outside the tracker, coverage $|\eta|<3.0$, tracks with $p_{T}>0.7 \mathrm{GeV}$
- Converted photons (25% of photons in the barrel)
- Timing resolution ~ 30 ps, almost full efficiency

Primary and Secondary vertex position and timing

- Each track has timing measurement at the MTD: t_{1}, t_{2}, \ldots
- Calculate time of flight from the vertex position to MTD for each track, taking into account trajector length, momentum etc
- Timing of a track i at the vertex is $t_{i}-\mathrm{ToF}_{i}$
- Timing of all tracks at the vertex should converge to the same value: T_{P} or T_{S}. Good constrain against background.
- Each vertex has both position and time measurement \rightarrow 4D vertex, $\left(\vec{X}_{P}, T_{P}\right)$ or $\left(\vec{X}_{S}, T_{S}\right)$

Reconstruction of LLP decaying into visible(s) + invisible

- Invisible particle $\left(M_{P}, \vec{P}_{P}\right)$
- travels from primary vertex with measured coordinates and time $\left(\vec{X}_{0}, T_{0}\right)$
- and decays at secondary vertex with measured coordinates and time (\vec{X}_{v}, T_{v})
- into a visible particle(s) with measured combined mass and momentum (M_{V}, \vec{P}_{V}) (no need to be a resonance)

- and an invisible particle $\left(M_{I}, \vec{P}_{I}\right)$

Precision timing gives $\vec{\beta}$ of LLP

$$
\vec{\beta}_{P}^{L A B}=\frac{1}{c} \cdot \frac{\vec{D}}{T_{v}-T_{0}}=\frac{\vec{P}_{P}^{L A B}}{E_{P}^{L A B}}
$$

Reconstruction of LLP decaying into visible(s) + invisible

We assume we have measured
$\vec{\beta}_{P}^{L A B}$ - velocity of parent particle in the lab
$E_{V}^{L A B}, \vec{P}_{V}^{L A B}$ - energy and momentum of visible decay products
Can boost visible system to LLP rest frame

$$
E_{V}^{P}=\gamma_{P}\left(E_{V}^{L A B}-\vec{P}_{V}^{L A B} \cdot \vec{\beta}_{P}^{L A B}\right)
$$

Energy of visible system in LLP rest frame

$$
E_{V}^{P}=\frac{m_{P}^{2}-m_{I}^{2}+m_{V}^{2}}{2 m_{P}}
$$

Can assume invisible system mass to calculate LLP mass

$$
m_{P}=E_{V}^{P}+\sqrt{E_{V}^{P^{2}+m_{I}^{2}-m_{V}^{2}}}
$$

"GMSB" SUSY

Illustration how this works in SUSY (GMSB)

An exercise to test neutralino reconstruction in the following SUSY scenario:

- reconstruction of $\tilde{\chi}_{1}^{0} \rightarrow Z+\tilde{G}$
- neutralino $\tilde{\chi}_{1}^{0}$ is long-lived
- gravitino \tilde{G} mass is negligible

Production

- from top-squark pairs
- $M(\tilde{t})=1000 \mathrm{GeV}, M\left(\tilde{\chi}_{1}^{0}\right)=700 \mathrm{GeV}$

Generator-level study with PYTHIA8

- top squark pair production 14 TeV p-p collisions
- top squark decays to top and neutralino promptly
- top quark decays to bottom and W (not used in the analysis)
- neutralino is long-lived with $c \tau=0.3,1.0,3.0,10.0 \mathrm{~cm}$
- neutralino decays to Z and gravitino (mass $=1 \mathrm{MeV}$)
- Z decays to electron-positron pair

Smearing

- Track resolution: $10 \mu \mathrm{~m}$ and $30 \mu \mathrm{~m}$ in transverse and longitudinal impact parameter (JINST 9 P10009, 2014) \rightarrow use $30 \mu \mathrm{~m}$ for simplicity
- PV resolution: 10-12um in each of three dimensions (JINST 9 P10009, 2014)
- Electron momentum resolution is 2%
- Timing resolution for tracks is 30 ps

Generated β of neutralinos

Generated η for electrons
most of the signal is in the barrel $(|\eta|<1.5)$

Reconstructed invariant mass of neutralino assuming timing resolution of MTD

$$
\sigma_{t}=30 \mathrm{ps}
$$

and mass of invisible (\tilde{G}) is zero

A nice observable to distinguish signal from background!

"compressed" SUSY

A case of two neutralinos with small mass difference

- $\tilde{\chi}_{2}^{0}$ travels between two separated vertecies
- $e^{+} e^{-}$pair does not need to be a resonance; $m_{e e}$ can be continuum distribution
- escaping $\tilde{\chi}_{1}^{0}$ does not need ot be invisible; it can decay to whatever, right away, or later
- This can be just a short segment in a long and complicated decay chain
- Production of $\tilde{\chi}_{1}^{ \pm}-\tilde{\chi}_{2}^{0}$ pairs. Three mass points tested

$M\left(\tilde{\chi}_{1}^{ \pm}\right)$	$M\left(\tilde{\chi}_{2}^{0}\right)$	$M\left(\tilde{\chi}_{2}^{0}\right)-M\left(\tilde{\chi}_{1}^{0}\right)$
100	100	10
400	400	10
250	250	50

Beta of decaying neutralino

Eta of electrons from neutralino decay (in the barrel!)

Measured values:

- primary vertex position and time (\vec{X}_{0}, T_{0})
- displaced $e^{+} e^{-}$vertex position and time $\left(\vec{X}_{V}, T_{V}\right)$
- invariant mass and momentum of $e^{+} e^{-}\left(M_{V}, \vec{P}_{V}\right)$

Observable $=M\left(\tilde{\chi}_{2}^{0}\right)-M\left(\tilde{\chi}_{1}^{0}\right)$

- First, calculate mass of decaying particle M_{P} assuming mass of invisible particle $M_{I}=0$ as described in previous slides
- Then, take a wild guess for mass of invisible particle $M_{\text {guess }}$ and calculate mass difference $\Delta M=M\left(\tilde{\chi}_{2}^{0}\right)-M\left(\tilde{\chi}_{1}^{0}\right)$

$$
\Delta M=\frac{1}{2 M_{0}} \cdot\left(M_{0}^{2}+m_{e e}^{2}+\sqrt{\left(M_{0}^{2}-m_{e e}^{2}\right)^{2}+4 M_{0}^{2} M_{\text {guess }}^{2}}\right)-M_{\text {guess }}
$$

What are the good values for $M_{\text {guess }}$?
Taking $M_{\text {guess }} \gg M\left(\tilde{\chi}_{2}^{0}\right)$ is as good as using the truth, almost

Reconstructed ΔM using $M_{\text {guess }}=5000$

Reconstructed mass splitting with MTD timing resolution of 30 ps With enough signal statistics, fit for $M_{\text {guess }} \rightarrow M\left(\tilde{\chi}_{2}^{0}\right)$

Other possibilities

Toy Simulations for following exercises

Event generation with RestFrames

- PDF parameterizations
- non-zero particle widths
- phase-space effects
- $M\left(\tilde{\chi}_{2}^{0}\right)=700 \mathrm{GeV}, M\left(\tilde{\chi}_{1}^{0}\right)=500 \mathrm{GeV}$

Gross detector effects represented

- PV's smeared by $12 \mu \mathrm{~m}$ in 3D
- SV's smeared by $65 \mu \mathrm{~m}$ in 3D
- timing resolution assumes 30 ps
- electron momentum smeared by 2% in 3D

- MET smeared by 15 GeV in 2D

Scenario 1a

Assume one LLP, semi-invisible decay, 4D reco of PV and SV

If visible system is resonant, energy of visible system in LLP frame will peak at distinct value

$$
E_{V}^{P}=\gamma_{P}\left(E_{V}^{L A B}-\vec{p}_{V}^{L A B} \cdot \vec{\beta}_{P}^{L A B}\right)
$$

Peaking signal with no prior assumptions

Scenario 1b

Assume one LLP, semi-invisible decay, 4D reco of PV and SV
Further, assume MET corresponds solely to invisible decay product(s) from this LLP
Extra constraint \rightarrow can solve for parent and invisible masses
even when visible system is not resonant

If we can assume that $\vec{E}_{T}=\vec{p}_{I, T}^{L A B}$, then

$$
E_{P}^{L A B} \vec{\beta}_{P, T}^{L A B}=\vec{p}_{P, T}^{L A B}=\vec{E}_{T}+\vec{p}_{V, T}
$$

Two equations can be solved for unknown $E_{P}^{L A B}$
$m_{P}=\left(\gamma_{P}^{L A B}\right)^{-1} E_{P}^{L A B}=\frac{\vec{\beta}_{P, T}^{L A B} \cdot\left(\vec{Z}_{T}+\vec{p}_{V, T}^{L A B}\right)}{\gamma_{P}^{L A B}\left|\vec{\beta}_{P, T}^{L A B}\right|}$
Can measure LLP mass with no prior assumptions

RestFrames Event Generation $\quad \tilde{\chi}_{2}^{0} \tilde{\chi}_{2}^{0} \rightarrow \mathrm{Z}(l l) \tilde{\chi}_{1}^{0} \mathrm{Z}(l l) \tilde{\chi}_{1}^{0}$

Scenario 1b

Assume one LLP, semi-invisible decay, 4D reco of PV and SV
Further, assume MET corresponds solely to invisible decay product(s) from this LLP Extra constraint \rightarrow can solve for parent and invisible masses even when visible system is not resonant

Can measure invisible

 particle mass$$
m_{I}=\sqrt{m_{P}^{2}-2 m_{P} E_{V}^{P}+m_{V}^{2}}
$$

with no prior assumptions

Scenario 2a

Assume two LLPs, semi-invisible decay, 4D reco of PV and SV

Two mass-sensitive observables from LLP measurements

If visible system is resonant (like $Z \rightarrow e e$), will peak at distinct value in 2D

Scenario 2a for various $c \tau$

Scenario 2b

Assume two LLP, semi-invisible decay, 4D reco of PV and SV Further, assume MET corresponds solely to invisible decay product(s) from these LLPs

If we assume

$$
\vec{E}_{T}=\vec{P}_{I a, T}^{L A B}+\vec{P}_{I b, T}^{L A B}
$$

then

$$
E_{P a}^{L A B} \vec{\beta}_{P a, T}^{L A B}+E_{P b}^{L A B} \vec{\beta}_{P b, T}^{L A B}=\vec{户}_{T}+\vec{P}_{V a, T}^{L A B}+\vec{P}_{V b, T}^{L A B}
$$

two equations, two unknowns, $E_{P a}^{L A B}$ and $E_{P b}^{L A B}$. Defining

$$
\hat{n}_{\|}=\frac{\vec{E}_{T}+\vec{P}_{V a, T}^{L A B}+\vec{P}_{V b, T}^{L A B}}{\left|\vec{E}_{T}+\vec{P}_{V a, T}^{L A B}+\vec{P}_{V b, T}^{L A B}\right|}, \quad \hat{n}_{\perp}=\hat{n}_{\|} \times \hat{z}
$$

We can calculate

$$
\begin{aligned}
& m_{P a}= \frac{\left|\vec{Z}_{T}+\vec{P}_{V a, T}^{L A B}+\vec{P}_{V b, T}^{L A B}\right| \vec{\beta}_{P b}^{L A B} \cdot \hat{n}_{\perp}}{\gamma_{P a}^{L A B}\left(\vec{\beta}_{P a}^{L A B} \cdot \hat{n}_{\|} \vec{\beta}_{P b}^{L A B} \cdot \hat{n}_{\perp}-\vec{\beta}_{P b}^{L A B} \cdot \hat{n}_{\|} \vec{\beta}_{P a}^{L A B} \cdot \hat{n}_{\perp}\right)} \\
& m_{P b}=\left|\vec{E}_{T}+\vec{P}_{V a, T}^{L A B}+\vec{P}_{V b, T}^{L A B}\right| \vec{\beta}_{P a}^{L A B} \cdot \hat{n}_{\perp} \\
& \gamma_{P b}^{L A B}\left(\vec{\beta}_{P b}^{L A B} \cdot \hat{n}_{\|} \vec{\beta}_{P a}^{L A B} \cdot \hat{n}_{\perp}-\vec{\beta}_{P a}^{L A B} \cdot \hat{n}_{\|} \vec{\beta}_{P b}^{L A B} \cdot \hat{n}_{\perp}\right)
\end{aligned}
$$

Can solve for both LLP and both invisible masses

Scenario 2b

Assume two LLP, semi-invisible decay, 4D reco of PV and SV Further, assume MET corresponds solely to invisible decay product(s) from these LLPs

Scenario 2b

Assume two LLP, semi-invisible decay, 4D reco of PV and SV Further, assume MET corresponds solely to invisible decay product(s) from these LLPs

Can measure both LLP and both invisible particle masses, even if they are different, even if visible systems in decays are not resonant

Summary

- Precision timing for tracks allows to reconstruct time-of-flight of LLP \rightarrow β of LLP
- With this new info, one can fully constrain kinematics of some semi-visible decays \rightarrow mass reconstruction. Or dramatically improve discovery potential for LLP
- Many interesting scenarios where LLPs are heavy. Decays result in barrel tracks.
- Hermetic timing layer (emphasis on barrel) is crutial for assigning timing to vertecies..

