# A new variant of dark matter freeze-out predicting long-lived particles at the LHC

[based on Garny, JH, Lülf, Vogl, 1705.09292, to appear in PRD]

Jan Heisig (RWTH Aachen University)







## Among key scientific goals of LHC:

Pinpoint the nature of dark matter!



Needed: Predictions for possible signatures of dark matter models

## Vanilla WIMP (Weakly Interacting Massive Particle)

#### Nice features:

- Works with simple models
- Not sensitive to initial thermal conditions (reheating) ✓
- Allows us to directly connect relic density (freeze-out)
   and experimental observables ⇒ clear predictions

LHC WIMP-program: MET-searches

## Vanilla WIMP (Weakly Interacting Massive Particle)



## Vanilla WIMP (Weakly Interacting Massive Particle)



## Other ways to produce dark matter with same nice features?

## Other ways to produce dark matter with same nice features?

#### Yes!

This talk: Consider slight departure from WIMP co-annihilation scenario

→ A new variant of dark matter production:

"Conversion-driven freeze-out"

[Garny, JH, Lülf, Vogl 2017]

[see also D'Agnolo, Pappadopulo, Ruderman, 2017]

#### Conversion-driven freeze-out

- Works with simple models
- $\blacksquare$  Not sensitive to initial thermal conditions (reheating)  $\checkmark$
- Allows us to directly connect relic density (freeze-out) and experimental observables ⇒ clear predictions, √ namely: Long-lived particles at LHC

Other avenues beyond WIMPs: Secluded dark matter [Pospelov, Ritz, Voloshin 2007; Feng, Kumar 2008], Asymmetric dark matter [Kaplan, Luty, Zurek, 2009], Freeze-in [Hall, Jedamzik, March-Russell, West, 2009], SIMPs [Hochberg, Kuflik, Volansky, Wacker, 2014], Co-Decaying dark matter [Dror, Kuflik, Ng, 2016], Forbidden dark matter [Griest, Seckall, 1991; D'Agnolo, Ruderman, 2015], Pseudo-Dirac dark matter [Davolia, De Simone, Jacquesa, Sanz 2017], ELDERs [Kuflik, Perelstein, Rey-Le Lorier, Tsai, 2016 & 2017], SuperWIMPs [Feng, Rajaraman, Takayama 2003], ...

## Revisiting WIMP co-annihilation



Usually (SUSY): 
$$\lambda_1 \sim \lambda_2 \sim g_{SM} \Rightarrow$$
 conversion always efficient  $X_1 \stackrel{\text{eq.}}{\longleftrightarrow} X_2$ 

## Revisiting WIMP co-annihilation

Usually (SUSY):  $\lambda_1 \sim \lambda_2 \sim g_{SM} \Rightarrow$  conversion always efficient

$$X_1 \stackrel{\text{eq.}}{\longleftrightarrow} X_2$$

Annihilation+ Co-annihilation in dark sector  $X_1, X_2 \rightarrow SM$ 



Larger effective annihilation cross section helps to reduce relic density:

$$\Omega h^2 \propto \frac{1}{\langle \sigma v \rangle_{\mathrm{eff}}}$$

## Conversion-driven freeze-out

[Garny, JH, Lülf, Vogl 2017]

Consider  $\lambda_1 \ll \lambda_2$ :  $\chi_1 \stackrel{\text{eq.}?}{\longleftrightarrow} \chi_2$ 



negligable

Conversion  $X_1 \rightarrow X_2$ 



Co-annihilation  $X_2 \rightarrow SM$ 



large rate

### Conversion-driven freeze-out

[Garny, JH, Lülf, Vogl 2017]



→ Relic density is set by the size of the conversion rate

## General back-of-the-envelope estimation:

Conversion rate (just) efficient at freeze-out:

$$\Gamma_{\rm con} \sim H \left( T_{\rm f} \simeq \frac{m_{\chi}}{30} \right)$$

If (inverse) 2-body decay  $x_2$ — $\bigcirc \subset_{SM}^{X_1}$  is allowed:  $\Gamma_{con} \sim \Gamma_{X_2}$ 

## General back-of-the-envelope estimation:

Conversion rate (just) efficient at freeze-out:

$$\Gamma_{\rm con} \sim H \left( T_{\rm f} \simeq \frac{m_{\chi}}{30} \right)$$

If (inverse) 2-body decay  $x_2$ — $\bigcirc \subset_{\rm SM}^{X_1}$  is allowed:  $\Gamma_{\rm con} \sim \Gamma_{X_2}$ 

$$\Rightarrow$$
  $X_2$  decay-length:  $\frac{1}{\Gamma_{X_2}} \sim \frac{1}{H(T_{\mathrm{f}})} \sim 1-100\,\mathrm{cm}$ 

(for masses I00GeV to a few TeV)

⇒ LHC: long-lived particles!

## A concrete example

- Specific model:  $\mathcal{L}_{int} = |D_{\mu}\widetilde{q}|^2 \lambda_{\chi}\widetilde{q}\overline{q}\frac{1-\gamma_5}{2}\chi + h.c.$
- SUSY-inspired simplified model:
   Choose Majorana DM and scalar bottom-partner



■ Yukawa-type interaction:



 $\lambda_{\chi}$  is a free parameter here [see Ibarra et al. 2009 for SUSY realization]

## Allowed parameter space

- Solve coupled set of Boltzmann equations
- Require Planck relic density



Decay length: O(I-100cm)

Simplified model chapter:

| Decay Production                   | j + inv.   | jj(+inv.) | $j\ell$ | $j\gamma$ |
|------------------------------------|------------|-----------|---------|-----------|
| DPP: squark pair<br>or gluino pair | SUSY<br>DM | SUSY      | SUSY    |           |



Table 1.3: Simplified model channels for LLPs with color charge.



Sbottom MET searches?



■ Sbottom MII searches? Non-prompt decay!



- Sbottom Searches
- Mono-jet searches





- Sbottom Searches
- Mono-jet searches
- Displaced jets

[see also ATLAS 1504.03634; as well as Davolia, De Simone, Jacquesa, Sanz 1706.08985 for a recent re-interpretation]





- Sbottom Missing searches
- Mono-jet searches
- Displaced jets
- Disappearing tracks ? [see also ATLAS 1310.3675, ATLAS-CONF-2017-017]

Interpreted for chargino

→ adapt to R-hadrons





- Sbottom searches
- Mono-jet searches
- Displaced jets
- Disappearing tracks ?
- HSCPs: search for detector-stable R-hadrons
  - → Reinterpretation for finite life-times rescale signal by fraction passing the relevant detector parts:

$$\sigma_{\mathrm{pred}} \to \sigma_{\mathrm{pred}} \times \overline{\mathcal{F}}_{\mathrm{pass}}$$

Use [CMS 1502.02522] to estimate fraction





- Sbottom Searches
- Mono-jet searches
- Displaced jets
- Disappearing tracks ?
- HSCPs: search for detector-stable R-hadrons
- → Reinterpretation for finite life-times rescale signal by fraction passing the relevant detector parts:

$$\sigma_{\mathrm{pred}} \to \sigma_{\mathrm{pred}} \times \overline{\mathcal{F}}_{\mathrm{pass}}$$

Use [CMS 1502.02522] to estimate fraction





 $c\tau\,[\mathrm{m}]$ 

## Allowed parameter space



## Allowed parameter space



## Summary

- Dark matter among key scientific goals for LHC
- Vanilla WIMP under pressure: Watch out for avenues beyond WIMPs with new LHC signatures!
- Conversion-driven freeze-out:
  - Shares nice features of WIMPs
  - Accommodates null-results from WIMP-searches
  - $H \sim \Gamma$ : Lifetimes naturally O(1-100 cm)
    - ⇒ Strong motivation for long-lived particles at LHC
- Our model: long-lived R-hadrons, other possibilities
- Interesting times for dark matter hunters lie ahead

## Backup slide

Computation of the fraction of detector-stable *R*-hadrons:

$$\mathcal{F}_{\text{pass}}^i = e^{-\ell/(c\tau\beta\gamma)},\,$$

$$\overline{\mathcal{F}}_{\text{pass}} = \frac{\sum_{i} \mathcal{F}_{\text{pass}}^{i} \mathcal{P}_{\text{on}}^{i} \mathcal{P}_{\text{off}}^{i}}{\sum_{i} \mathcal{P}_{\text{on}}^{i} \mathcal{P}_{\text{off}}^{i}}$$