

Imaging Macromolecules with Xray laser pulses

Henry Chapman *Center for Free-Electron Laser Science* DESY and University of Hamburg

CERN Colloquium - July 2017

Bundesministerium für Bildung und Forschung

European Research Council Established by the European Commission

YourGenome.com

wehi.edu.au

Walter & Eliza Hall Institute

wehi.edu.au

Walter & Eliza Hall Institute

Walter & Eliza Hall Institute Yonath group, Weizmann Institute & Max Planck group Hamburg

X-ray diffraction led to the discovery of the double helix

Rosalind Franklin

James Watson & Francis Crick

Photograph 51, the X-ray image produced by Rosalind Franklin and her PhD student Raymond Gosling in 1952. The cross pattern visible on the Xray highlights the helical structure of DNA.

Wellcome Images

alaphys.org/list/watson-and-cricks-3d-model-of-dna/

http

The first protein structure to be determined was haemoglobin, in 1959

Over 100,000 macromolecular structures have been solved using synchrotron sources

High radiation dose causes changes in molecular structure

Crystal of Bovine enterovirus 2 (BEV2) after subsequent exposures of 0.5 s, 6 x 10⁸ ph/µm² 300 kGy dose Room temperature

Cryogenic cooling gives 30 MGy tolerance

Axford et al. Acta Cryst. D68 592 (2012) Diamond Light Source (courtesy Robin Owen & Elspeth Garman)

X-ray free-electron lasers may enable atomic-resolution imaging of biological macromolecules

R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, J. Hajdu, Nature 406 (2000)

The European XFEL is located in Hamburg

The European XFEL in Hamburg

Schenefeld site photo taken on 20 July 2014

European XFEL

injector

The European XFEL has just begun operations

XFEL tunnel photo taken on 11 June 2015

X-rays are produced by a process called SASE

X-ray FELs are a billion times brighter than synchrotrons

X-ray free-electron lasers may enable atomic-resolution imaging of biological macromolecules

Single particles give continuous diffraction patterns

Over-constrained: more knowns than unknowns

Phasing is achieved using iterative algorithms

nitride membrane

Chapman et al. Nature Physics 2 839 (2006)

"Diffraction before destruction" was demonstrated with soft X-rays at DESY's FLASH FEL

We have performed 3D X-ray imaging of Aerogel foam at 10 nm resolution

Analysis of the 3D image reveals anisotropy in the structure. Other characterization techniques (TEM, SAXS) could not reveal this

A. Barty, et al., PRL **IOI** 055501 (2008)

Atomic-resolution diffraction from single p requires focused intensities of more than

3 Å resolution

6000 MGy/fs x 10 fs

RMS displacement: 0.5Å half electrons ionized

Crystals give Bragg spots

 $I(\mathbf{q}) = \left|\hat{\rho}(\mathbf{q})\right|^2$ $\rho(\mathbf{x})$ 1. 1. 1. 1. 1. 1. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 222222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Crystals give Bragg spots

 $I(\mathbf{q}) = \left|\hat{\rho}(\mathbf{q})\right|^2$ $\mathcal{F}^{-1}\{I(\mathbf{q})\} = \rho(\mathbf{x}) \otimes \rho^*(-\mathbf{x})$

Under-constrained: fewer knowns than unknowns

Recent hard X-ray experiments show high-resolution diffraction

Photosystem I 9.3 keV Single shot pattern ~1 mJ (5 × 10¹¹ photons) 40 fs $2 \times 10^{17} \text{ W/cm}^2$

25 GW X-ray pulse

crystals by Petra

Fromme

Serial crystallography is made possible by four key technologies

Micrometer-diameter jets are formed by fluid and gas focusing

We can sum patterns to create a virtual powder pattern Lysozyme crystals 1.9 Å resolution

Intensities are merged into a "3D powder" pattern

Structures have been obtained by in vivo grown crystals

Trypanosoma brucei cathepsin B obtained from in vivo grown crystals

Redecke, Nass et al. Science (2013)

Over 100 XFEL structures have been solved

Solution scattering gives single-molecule diffraction, but orientationally averaged

Aligned molecules yield a single-molecule pattern

Crystals provide a very high degree of alignment

したをとたとと しとととととと ししししとしと . とととととと . しししたもしし . とととととと ししししししし $\langle I(\mathbf{q}) \rangle = \left| \sum_{i} \hat{\rho}_{i}(\mathbf{q}) \right|^{2} \exp(-q^{2}\sigma^{2}) + \sum_{i} |\hat{\rho}_{i}(\mathbf{q})|^{2} (1 - \exp(-q^{2}\sigma^{2}))$ $\sigma^{2} = \langle D^{2} \rangle$

You can see a lot just by looking

By averaging thousands of patterns a strong single molecule diffraction pattern emerges

The orientational symmetry of the crystal is preserved, but not the translational symmetry

Electron density map from Bragg peaks alone (4.5 Å)

The low-resolution support constrains the phases

Obtained by convolving 4.5 Å MR map with Gaussian of width 4.4 Å (i.e. 8.9 Å resolution)

Electron density map including continuous diffraction

The extended-resolution structure is superior

Higher diffraction sampling — model free phasing — more reliable structure determination

Resolution not limited by the crystal, just detector extent and shots

Number of molecules per shot: $1 \mu m^3 \times 4 / (9.2 \times 10^6 \text{ Å}^3) = 4 \times 10^5$

The extended-resolution structure is superior

We observe continuous diffraction in other systems, and have extended observation of PS II to 1.9 Å

The continuous diffraction agrees with the simulated diffraction from the atomic model

Cross Correlation = 75%

There are many opportunities for extending imaging concepts to X-ray diffraction at the atomic scale

Measurements require care to eliminate background and record weak continuous diffraction

Poorly diffracting crystals are better!

- More information than required to describe the object
- model free phasing
- more reliable structure determination
- first new phasing since MAD
- resolution better than you think

Atomic-resolution diffraction from single p requires focused intensities of more than

A. Classen *et al* arXiv.org:abs/1705.08677 Measure interference of fluorescence during the coherence time

10¹⁴ ph/µm² 60 GGy 6000 MGy/fs x 10 fs

RMS displacement: 0.5Å half electrons ionized

Coherent X-ray Imaging at CFEL

LCLS experiments and analyses are carried out as a large collaboration

CFEL-DESY/UHH	A. Barty, T. White, S. Stern, C. Caleman, K. Beyerlein, R. Bean, R. Kirian, F. Wang, H. Fleckenstein, L. Gumprecht, L. Galli, S. Bajt, M. Barthelmess, O. Yefanov, D. Oberthür, C. Gati, M. Heymann, C. Seuring, M. Metz, A. Morgan, V. Mariani, A. Tolstikova, J. Knoska, X. L. Pauraj, K. Ayyer
ASU	J. Spence, P. Fromme, U. Weierstall, B. Doak, X. Wang, I. Grotjohann, R. Fromme, N. Zatsepin, D. Wang, D. James, S. Basu, C. Kupitz, J. Coe, C. Conrad, K. Dörner, D. James, G. Nelson
MPG Med. Res.	I. Schlichting, R. Shoeman, L. Lomb, S. Kassemeyer, K. Nass, T. Barends, S. Botha
SLAC	S. Boutet, M. Liang, A. Aquila, G. Williams, C. Bostedt, J. Koglin, M. Messerschmidt, and many others
Uppsala	J. Hajdu, N. Timneanu, J. Andreasson, M. Seibert, F. Maia, M. Svenda, T. Ekeberg, J. Andreasson, A. Rocker, O. Jonsson, D. Westphal
Gotheburg	R. Neutze, L. Johansson, D. Arnlund
LLNL	S. Hau-Reige, M. Frank
U. Hamburg	C. Betzel, D. Redhers, D. Oberthür, M. Perbandt
U. Lübeck	L. Redecke
CFEL DESY Theory	R. Santra, SK. Son
U. Milwalkee Wisconsin	M. Schmidt, J. Tenboer, K. Pande
Funding: 🙀	HELMHOLTZ ASSOCIATION CEFC Bundesministerium für Bildung und Forschung DEFG

European Research Council

Established by the European Commission

.

New sources and detectors are producing an explosion in experimental data volumes

I kHz = 3.6M frames per hour

I MPix at I kHz = 2000 MB/sec (16 bit) ~ 6.8 TB per hour

LCLS-II estimates a cost of over \$250M to save all data, \$35M to save two weeks' worth

Data processing is an exercise in data management and reduction

Automated high throughput data processing is essential