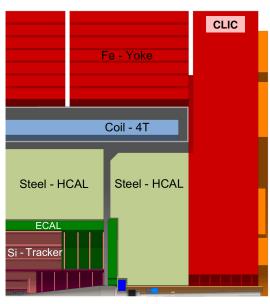
Tracking with the CLIC-inspired detector for FCC-ee

Oleksandr Viazlo, Emilia Leogrande

CERN


31 July 2017

Introduction

- This talk covers an update on the CLIC-inspired detector for FCC-ee
- An overview of the CLIC detector together with the layout of the detector for FCC-ee has been shown by Emilia in a previous Detector Design meeting
- The main focus of this presentation is the layout of the VTX and Tracker subsystems and the overall tracking performance

CLIC detector

Subdetectors

- Full silicon VTX and Tracker: ≥12 hits per track
- W-Si ECAL and Fe-Scint HCAL
- Coil is outside of the calorimeter;
 4 Tesla magnetic field
- Steel return yoke with 6 RPC muon chambers

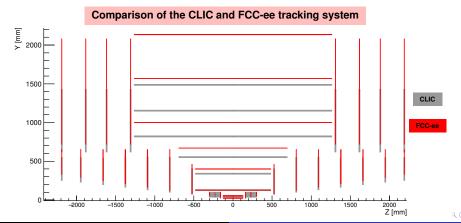
Detector requirements

- Momentum resolution (at 500 GeV): $\sigma_{\rm p_{\rm r}}/{\rm p_{\rm T}}^2 \simeq 2\cdot 10^{-5}~{\rm GeV}^{-1}$
- Lepton ID efficiency: > 95%
- Impact parameter resolution:

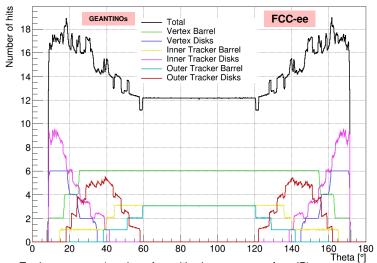
$$\sigma_{d_0} = a \oplus rac{b}{p \sin^{3/2} heta} \ a \leqslant 5 \mu ext{m}, \ b \leqslant 15 \ \mu ext{m} \ ext{GeV}$$

Jet energy resolution: $\sigma_E/E \simeq 3.5 \ \%$

FCC-ee detector model

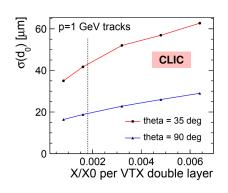

- Latest version of the detector, FCCee_o5_v03, is based on the latest CLIC model (CLIC_o3_v12), which makes it compatible with the latest ILCSoft and CLIC subdetector drivers.
- All future bug-fixes of drivers and updates of algorithms will work for both CLIC and FCC-ee models.
- Intensive testing and verification of the detector model were done to make sure that simulation and reconstruction work as expected.

Overall dimensions of CLIC and FCC-ee detectors


	CLIC		FCC-ee
VTX Barrel	31-60 mm	\Longrightarrow	17-59 mm
VTX Endcap	Spirals	\Longrightarrow	Disks
Tracker radius	1486 mm	\Longrightarrow	2100 mm
ECAL thickness	40 layers, 22 X ₀	\Longrightarrow	40 layers, 22 X ₀
HCAL thickness	60 layers, 7.5 λ_I	\Longrightarrow	44 layers, 5.5 λ_I
Yoke thickness	1989 mm	\Longrightarrow	1521 mm
MDI (forward region)		\Longrightarrow	< 150 mrad
Solenoid field	4 Tesla	\Longrightarrow	2 Tesla

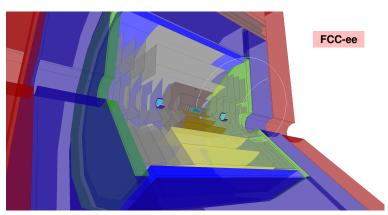
VTX and Tracker layout

- Overall structure of VTX and Tracker is the same as in the CLIC detector
- VTX barrel is a scaled version of the CLIC VTX barrel
- VTX endcaps consists of disks (while CLIC has spirals, to allow air cooling)
- Tracker radius is increased to compensate for smaller magnetic field
- Minimum radius of the IT disks is adjusted to the MDI region, 150 mrad

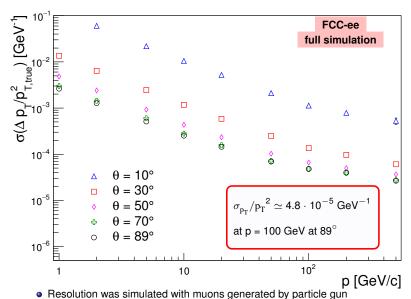

Coverage of VTX and Tracker detectors

- Tracker coverage (number of sensitive layers as seen from IP).
- \bullet More than 12 hits over theta range 8.6 $^{\circ}$ 171.4 $^{\circ}$

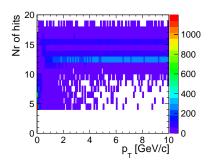
Material budget of VTX and Tracker

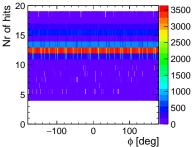

- Due to power-pulsing, CLIC VTX can be cooled by air flow. Since power-pulsing is not suitable for FCC-ee operation the material budget of the VTX has to be revised.
- The study of the effect of increased material budget in VTX on impact parameter and momentum resolution is ongoing.

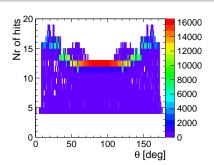
 Current FCC-ee model doesn't contain support structures and cables (while it is implemented in CLIC model)... will be added soon


Tracking

- Two tracking algorithms are available:
 - truth tracking track fitting is done by using all hits produced by particle (by using truth information)
 - conformal tracking hits are found by pattern recognition algorithm in conformal space
- All results shown below are obtained with truth tracking.
- Single-point resolution (sigma): VTX $3\times3~\mu\text{m}$; IT $7\times300\mu\text{m}$; OT $7\times3000\mu\text{m}$

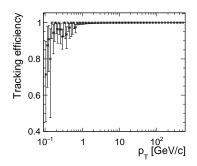

ullet Charged particles with $p_T > 0.65$ GeV reach calorimeter.

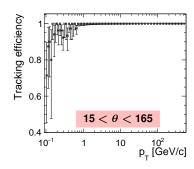

Momentum resolution



The solution was simulated with muons generated by particle guin

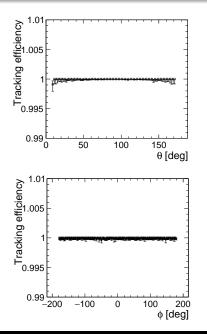
Number of hits per track

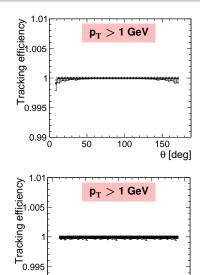




- Muons are generated with general particle source with:
 - isotropic angular distribution (uniform in cos(θ))
 - uniform energy distribution
- 12 hits per track on average
 - ightarrow all hits are used during track fitting

Tracking efficiency as function of p_T




Tracking efficiency =
$$\frac{N_{tracks}^{reconstructed}}{N_{particles}^{reconstructable}}$$

- reconstructable particles:
 - PDG ID = 13 (muon)
 - N_{hits} ≥ 4
 - $|\cos(\theta)| < 0.99$
 - $p_T \geqslant 0.1 \text{ GeV/c}$
 - particle track is not a loop (does not have two hits on the same layer of the same subdetector)

Tracking efficiency as function of θ and ϕ

-100

0

100

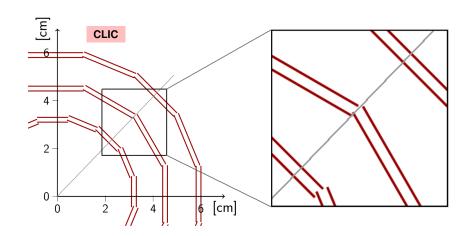
200

φ [deg]

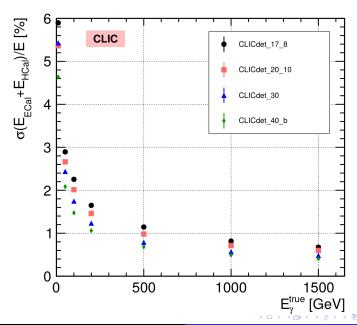
0.99 _____

Summary and outlook

- Complete FCC-ee detector model is available for performance studies
- Tracking performance was studied with full simulation and reconstruction (truth tracking)


Next steps

- Conformal tracking performance (presently being completed for CLIC)
- Conformal tracking for complex events (e.g. Z → uds events)
- Conformal tracking with overlay of beam background
- Effect of increased material budget in VTX
- Calorimeter studies:
 - single electrons, photons, muons and pions (PID efficiency as function of pT and theta)
 - · complex events PID efficiency
 - jet energy resolution
 - all above with beam background overlaid



BACKUP

VTX barrel layout

Photon energy resolution for different number of ECAL layers

