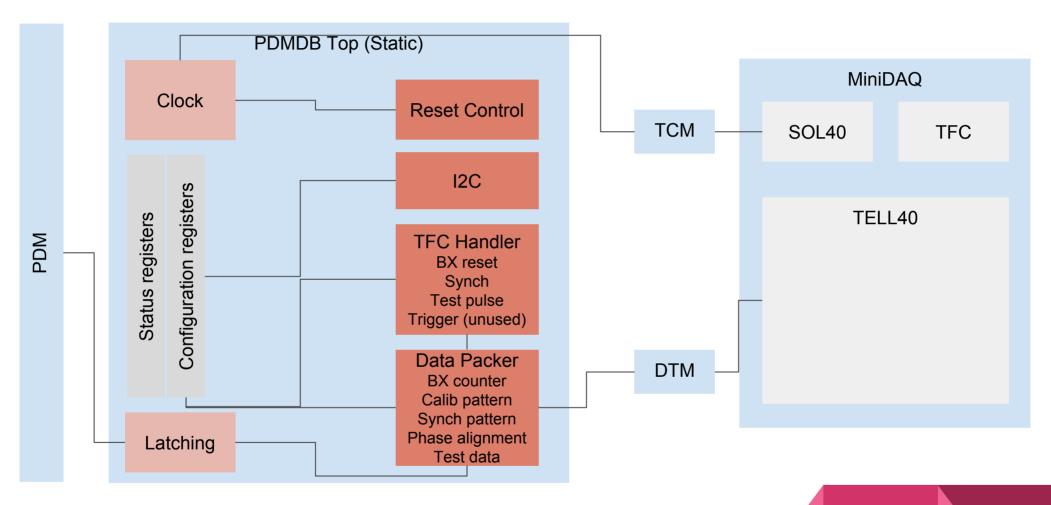

RICH experience with MiniDAQ2

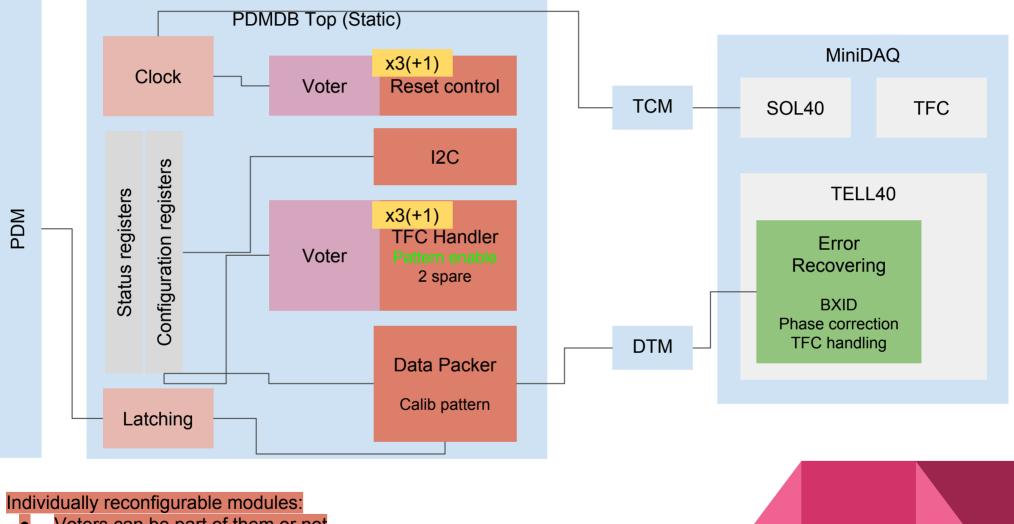
Antonino Sergi

Outline


- Few (recycled) RICH slides:
 - An overview of our application
 - A couple of useful details
- Inter-system clock phases
 - Annoying stuff
- WinCC amenities
 - Our panels
 - Packaging and repo

Overview

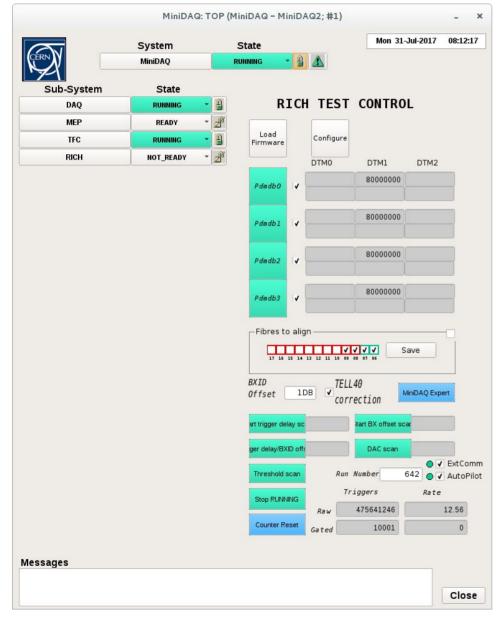
- Successful test beam, but:
 - Phase alignment for the e-links can be annoying and unstable
 - Clock generation could be improved
 - Added input FIFO to delay 1 orbit (3564 clock cycles) to align data and trigger in the MiniDAQ1; just a patch: it will not be in the final design
- Plans for a final design, rad-hard:
 - Move the orbit synchronization in the MiniDAQ (up to them) Done, but not fully tested
 - Move most of the functionality in the TELL40 (Steve's suggestion) Done
 - Reorganize the clock distribution:
 - Drop the MMCM Done
 - Try to make it synchronous with the 40MHz master clock Done
 - Try to exploit Xilinx Partial Reconfiguration (PR) to minimize configuration time (15s/FPGA on MiniDAQ1 Done
 - Introduce Triple Module Redundancy (TMR), integrated with PR
 - Hierarchical design and implementation Done
 - Thin down the firmware as much as possible Done
 - Identify critical signals and apply triple voted logic Done
 - Exploit TELL40 to react to failures Done, but not fully tester


Old architecture (full functionality)

Full functionality on detector:

- Reading TFC commands
- Flagging data
- Not rad-hard

Thinned architecture with PR and TMR



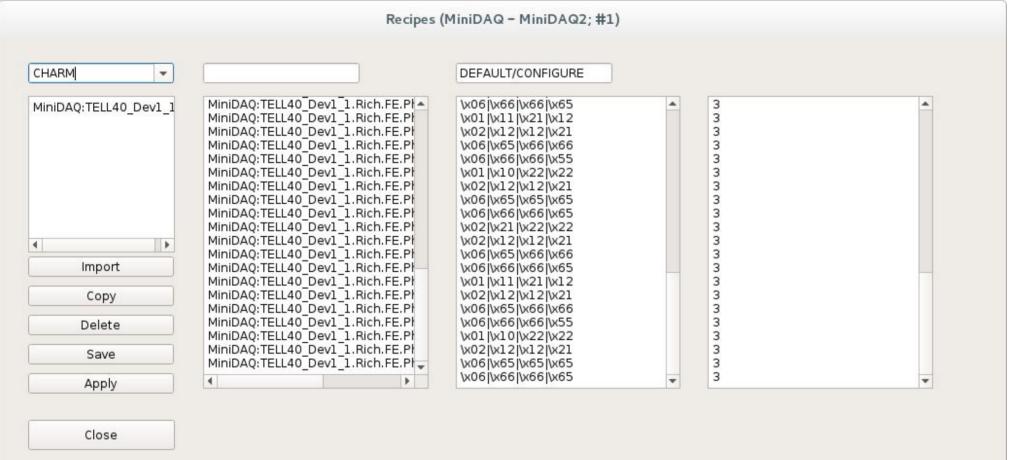
Voters can be part of them or not

Firmwares interaction and integration

- Master clock at 40MHz via GBTx
 - Multiplied by GBTx to 160MHz (we use e-links at 320Mb/s DDR) and delivered to FPGAs
 - We don't use any PLL to get 40MHz, but a clock buffer divider
 - We don't use the clock lines from the e-links
- 40MHz is used to pack the data
- 160MHz is used to serialize data to send via e-links
 - Individual serializers for e-links need to be aligned to the correct phase
- We managed to guarantee that the internal 40MHz is in phase with the master 40MHz
 - Otherwise the misalignement of data changes at each startup
 - We use the incoming e-links (for TFC) at 80Mb/s DDR

WinCC panels

- What is provided is ok for quick tests, but starting to use it for measurements we needed more:
 - run number
 - step runs
 - threshold scan
 - DAC scan
 - latency scans
 - FE configuration:
 - CLARO config
 - loading firmware
 - \circ Recipes
- Mostly compatible with MiniDAQ1


WinCC panels

	Pdmdb2Contr	rol (MiniDAQ - MiniDAQ2; #1)
Pdmdb2 GBT 2 Initia	PDMDB (Control
Data Links	GBT files	FPGA0 Filename
DTM0	Link Program Lin 0 Enabled	
DTM1 Program GBT0 ✓ Enabled	Link Lin 8 Definition O	Configuration Configuration Configuration
DTM2 <i>Enabled</i> Program all GBTs	Link 0 Check GBTs V Fast Mode	Alian phones
CLARO Claro Config Filena /home/WinCC/ConfigFiles/c Program Claros		ed Set Claro Check Claros
		Close

PR_TMR	*	PR_TMR Data_Packer_inst	-
ed4bf14	•	PR_TMR Reset_Control_inst0	-
Apply		PR_TMR Reset_Control_inst1	•
Program FPGA		PR_TMR Reset_Control_inst2	
		PR_TMR Reset_Control_inst3	
		PR_TMR TFC_inst0	-
		PR_TMR TFC_inst1	-
		PR_TMR TFC_inst2	
		PR_TMR TFC_inst3	-
		PR_TMR Voter_TFC_inst	-
		PR_TMR Vtr_Rst_Cntrl_inst	-

- SCA-I2C/SPI/JTAG are supported for a single instruction:
 - we needed a bunch of panels and scripts
- A lot faster (x10) on MiniDAQ2
 - CPU usage of GBtServ, WCCOAxx ~20%

WinCC panels

- Recipes are still a dev feature:
 - only one recipe in the FW
 - we supplemented it cheating

Summary

- Detector side:
 - BXID flagging: offsets and latency may not be obvious to find, especially with asynchronous triggers (test beam case)
 - GBTx e-links phase alignment: it took some effort to make it reproducible after powercycles
- MiniDAQ2
 - After patching the LLI clock tree it is usable (standalone)
 - \circ $\:$ Significant improvement on the SCA side in terms of speed of operation
 - 1.1MB Xilinx (compressed) bitstream
 - MiniDAQ1: 15(30) seconds with GbtServ off(on)
 - MiniDAQ2: 2-3 seconds
 - Useful in tests
 - Very relevant in real applications
 - The first one broke after a few weeks of usage (DC-DC converters), and it's being replaced
- WinCC
 - It usually works (besides versioning stuff)
 - To use it for test beams or measurements quite some work is required
 - Not very multi-developer friendly yet (subdetector components)