

MEDeGUN

an electron gun for a high intensity C⁶⁺ source

M. Breitenfeldt

Short CV

Down to single ions in a Penning trap for mass measurements @ ISOLTRAP

KU LEUVEN

Up to 10⁶ ions in a Penning trap for weak interaction studies @ WITCH

Electron **B**eam Ion **S**ource for charge breeding of up to 10⁸ ions with an extraction frequency of 400Hz

Strong (several T) **magnetic** fields and **electrostatic** fields for confinement of **charged particles**

isoltrap.web.cern.ch

Samuel Morier-Genoud/CERN

Outline

- 1. Heavy ion cancer therapy
- 2. EBIS as injector
- 3. MEDeGUN design and assembly
- 4. Commissioning

Why heavy ions?

- Heavier ions deposit more energy than protons in the Bragg peak
- Higher relative biological effect due to doublestrand DNA break-ups → choice for radiationresistant tumors
- In a population of 10 millions 4500 cases per year

 \rightarrow ~ 6 facilities a 750 patients/year/10million people

→ require **300 facilities** in EU

e.g. CABOTO CArbon BOoster for Therapy in Oncology

- 400 Hz
- < 5 us long pulse</p>
- Low emittance
- 10⁸ C⁶⁺ ions per pulse
 - S. Verdu-Andres et al., Journal of Radiation Research 54 (2013) il55
 - S. Benedetti 2016 (talk) Update on TULIP and CABOTO projects

Outline

- 1. Heavy ion cancer therapy
- 2. EBIS as injector
- 3. MEDeGUN design and assembly
- 4. Commissioning

EBIS vs ECRIS

Electron Cyclotron Resonance Ion Source

- Long ion pulse, even with afterglow
- Only 4⁺ produced with sufficient intensity
 → Stripper foil
- Large transverse emittance
- Electron Beam Ion Source
- Clean (good vacuum)
- Short pulse are extracted
- Low transverse emittance
- We have the expertise

EBIS principle

Electron energy \rightarrow cross section for ionization

Current \rightarrow ion capacity

Suggested MEDeGUN

High compression **Brillouin electron gun** (laminar beam, cathode sees no B-field)

Low electron beam energy, **optimized for C**⁶⁺

Vacuum 5*10⁻¹¹ mbar

Installation at TwinEBIS testbench

TwinEBIS test stand with 2 T superconducting solenoid M. Breitenfeldt et al., Nucl. Instrum. Methods A, 856 (2017) 139

Design Parameter	MEDeGUN
Test site	TwinEBIS, CERN
Main magnet	2 T
Trap length	0.25 m
Electron current	1 A
Current density	1.5 kA/cm ²
Electron energy	7.5 - 10 keV
Capacity C ⁶⁺	1·10 ⁸ ions per pulse
Repetition rate C ⁶⁺	180 Hz

Approved as **KT project** in 2015:

 Design and build an electron gun
 Demonstrate transmission of 1A through a 2T magnetic field

Outline

- 1. Heavy ion cancer therapy
- 2. EBIS as injector
- 3. MEDeGUN design and assembly
- 4. Commissioning

MEDeGUN design challenges Electron beam properties

Simulation: Electron trajectories as from cathode towards the hand over point (by R. Mertzig)

Repulsive Coulomb force \rightarrow Magnetic field to reduce divergence of e⁻ beam

Magnetic mirror: too high relative transversal energy leads to reflection

- 1. Side emitted electrons
- 2. Temperature
- 3. Surface roughness
- 4. Work function distribution

Design of the electromagnetic field

Magnetic field of the TWINEBIS test bench

Axial field

Z (mm) Negative: Col side | Positive: Gun side

Y.V. Baryshev et al. Instr. Meth. Phys. Res., 340(2), 1994.

R. Mertzig, PhD thesis TU Dresden 2016

Simulation results

R. Mertzig et al., Nucl. Instrum. Methods A, 859 (2017) 102 R. Mertzig, PhD thesis TU Dresden 2016

MEDeGUN design challenges Machine boundaries

Production

Example: Production drawing for anode piece

Anode unmachined part: Armco disc with copper piece

Finished anode piece: E-field and B-field

Surfaces for the E-field of the gun volume have tolerances of 20um!

Quality control

Wehnelt and Anode piece

And finally this spring...

- Installation finished
- Leak test
- HV tests
- Bake out
- Start of the electron beam

KT project:

 Design and build an electron gun
 Demonstrate transmission of 1A through a 2T magnetic field

Outline

- 1. Heavy ion cancer therapy
- 2. EBIS as injector
- 3. MEDeGUN design and assembly
- 4. Commissioning

MEDeGUN Commissioning: Challenges

Minimizing loss currents on all electrodes while transmitting 1 A of electron beam

MEDeGUN Commissioning: Results

 Anode Last Drift Tube

Suppressor

oss current [au] Typical transmission and loss currents 10 keV electron energy 10 kV extraction potential 4000 6000 8000 10000 12000 2000 Anode voltage [V] 1116 mA Suppressor Anode Last Drift Tube **Total losses** 0.55 mA 0.13 mA 0.32 mA 1 mA1508

Record current 1.5 A

MEDeGUN Commissioning: Results

Typical transmission and loss currents 10 keV electron energy 10 kV extraction potential

KT project:

Design and build an electron gun
 Demonstrate transmission of 1A through a 2T magnetic field

Outlook

Why?

- Determine the current density breeding time
- Verify amount of extracted C⁶⁺ capacity of the EBIS

Given the resources: Can be realized by 06/2018

THANKS

Thanks to the EBIS team: F. Wenander, A. Pikin, J. Pitters, F. di Lorenzo former members R. Mertzig, A. Shornikov, and technical advisor S. Mathot

