Short Strip Stave Issues

- Alternative Staves
- Radiation Length Issues
- Cooling
- Specifications

Emphasis on discussion and exhange of ideas

1-d SS Stave Model \approx 100% Single Coordinate 6.4 cm Coverage ___ Core 100 cm 0 cm 6.1 cm 12.2 cm 18.3 cm 6.4 cm Hybrid (BeO) Silicon Core 500 um 300 um_ 300 um 50 um 400 um 3.1 cm 9.2 cm 15.3 cm Ероху

2-D SS Stave Model

Reduce pitch to 50 um to increase strip length

Hybrid

Inter-IC	Power Interface	Inter-IC

6" wafers, 10 x 10 cm detector, 4.9 cm long strips

U-Strip Module

Y-Strip Module

Rough Comparison 1d vs 2d

	1-d Stave	2-d Stave	
Prob 1 hit	≈ 100%	>97%	
Prob 2 hit	0%	>94%	
Radiation Length	Less	More	
Difficulty to Fab	Easier	Harder	
σ _z	8.7 mm		*Amiquity based upon occupancy at R=24 cm
=> Would build 1-d if	θ [mRad]	σ _z [mm]	Ambiguity(%)*
physics allows	40	0.7	56
	20	1.4	28
	10	2.8	14

Stave Core Variants

CDF Style Foam Core Sandwich

One Piece Carbon Fiber

Scaffold Style

CMS Style (Rad length?)

Radiation Length

Item	Material	Size	Radiation Length (%)		
			no overlap	with overlap	
Detectors (wafers)	Silicon	$\begin{array}{c} 6.36 \times 12.82 \ {\rm cm^2} \times \\ 600 \ \mu {\rm m} \end{array}$	0.64	0.70	
Hybrid ^a	Copper	$\frac{2.14 \times 11.0 \ \mathrm{cm^2} \times 0.6\% \ \mathrm{X_0}}{}$	0.35	0.38	
Mounting Block	Carbon	$1 \text{ cm wide} \times 0.19 \text{ cm thick}$		0.17	
Support cylinder	Carbon			0.30	
Services (cooling, cables)	Copper	0.128 cm thick at η=0		0.61 at η=0 (0.950 at end)	
Total				2.16 at η=0	

Table 3-9 SCT barrel material.

a. Allows for hybrid, chips, fan-ins, glue, printing, washers and connectors.

Total=2.16%/layer. Includes cooling fluid? How accurate is it?

Radiation Length--coolant

Chart below from an Atlas document

														Percenta
														ge
						Volume				Total		Radiation		Radiation
		Pipe OD	Pipe ID	Area	Length	(each)	Density	Mass	No. On	Volume	Total	Length		Length
Components	Material	(mm)	(mm)	(mm2)	(mm)	(mm3)	(g/mm3)	(each) (g)	Disc	(mm3)	Mass (g)	(mm)	t	(%)
Outer Cooling Circuit	CuNi	3.74	3.6	0.81	2856	2305.0	8.95E-03	2.06E+01	4	9220.0	8.25E+01	14.4	0.011981	0.083
Inner Cooling Circuit	CuNi	3.74	3.6	0.81	2069	1669.8	8.95E-03	1.49E+01	4	6679.4	5.98E+01	14.4	0.00868	0.060
Middle Cooling Circuit	CuNi	3.74	3.6	0.81	3098	2500.3	8.95E-03	2.24E+01	4	10001.3	8.95E+01	14.4	0.012996	0.090
Coolant	C3F8	3.74	3.6	10.18	8023	81664.2	4.50E-05	3.67E+00	4	326656.8	1.47E+01	7778	0.424477	0.005

? We assume cooling tube is half liquid on average. Is this correct?

Liquid $CO_2 X_0 = 36 \text{ cm}$

If two pipes/stave, 100 um Cu-Ni walls, diameter 4mm, then get "effective thicknesses":

Pipes: $t_{eff} = (2 \text{ pipes x pi x 4 mm / 6.4 cm})* 100 \text{ um} = 40 \text{ um}$ CO₂: $t_{eff} = 2 \text{ pipes x pi x } 2^{2}\text{mm * } \frac{1}{2} \text{ full / 6.4 cm} = 200 \text{ um}$

Model of 1-d Stave Core + Busses

Quick Radiation Length Estimate of 1-d Foam core model

Note: If we wish to compare to present Atlas in terms of radiation length, the support structure is not included and information is only 1-d.

Integrated Carbon Fiber/Cooling Stave

- Integrated cooling provide lower thermal resistance
- May be able to make in one piece via pultrusion process
- There was concern about stability of rohacell core

Integrated Carbon Fiber/Cooling Stave

- Pultrusion does not seem to be a viable option. 5 vendors contacted. Wall thickness a difficulty even though original drawing had 1mm walls that are unacceptable from radiation lenght point of view.

- Comparison of foam core and intergrated carbon fiber radiation length

Foam core rad length (rohacell+skin)+Cu tubes = .1 + .25 + .29 = .64 %

Integrated CF stave (5mm height) with 500 um walls gives effective thickness of 500 um (top) + 500 um (bottom) +2/6 *500 um (cooling walls)=1.2 mm. Rad length = 1.2 mm/20 cm = 0.60%.

- Not yet CF clear walls could handle high pressure necessary.

Integrated Carbon Fiber/Cooling Stave

- Looking into alternative production techniques

Hi Augie - I have had the chance to review your request for the Atlas Stave Detector. The parts pose some interesting challenges that we would be eager to tackle. What we would propose is a co-molded part using a Rohacell core in the large cells and an extractable core for the smaller cooling channels. This will make the tooling more versatile and remove a bit of the complexity as well. Because the parts are so thin, we do have some concern with the overall flatness requirement along the length of the part and some investigation would be required to determine how attainable those tolerances are.

For the sake of planning my estimate on the costing is as follows:

Description	Cost Estimate
Tooling and NRE for all three sizes	\$8K to \$10K total*
Large Stave, qty 200 pieces	\$500 each
Medium Stave, 350 pieces	\$300 each
Small Stave, 250 pieces	\$125 each**

* includes process refinement, equipment modification, all tooling and expendable cores, for all three sizes ** There is a possibility of "gang-molding" this particular part, which could have a favorable impact on pricing. An investigation would need to be conducted.

These might be a bit on the conservative side, not knowing all of the parameters or much about the end use. We can certainly refine these once it has been determined that you have interest. Please let me know if I can get you any additional information on this. We appreciate your consideration and hope to be working with you in the future.

Sincere regards,

Jeff Allott

Rohacell

- Is it stable
- Are there problems with CTE matching to -25C?
- Is it rad hard?

More information was found on the internet. The IU Atlas project at CERN had conducted tests on Rohacell 31. They found that at exposures above 9.2 Mrad rohacell "completely gave out and could not hold any more weight." This only happened after they subjected the exposed rohacell sample to over 400 grams of weight. [Radiation test on Transition Radiation Materials, H. Orgen, et. al., February 29, 1996, needmore.physics.indiana.edu/~fred/iu_atlas/iu_atlas.html]

Are there better foam alternatives?(e.g. better thermal conductivity?)

- Was LBNL considering something else?

K-Foam an alternative Rohacell?

	Kfoam	Rohacell	Properties	Unit	ROHACELL [®] 51 WF	ROHACELL [®] 71 WF	ROHACELL [®] 110 WF	ROHACELL [®] 200 WF
	L1	110Wf	Density	kg/m ³ lbs./cu.ft.	52 3.25	75 4.68	110 6.87	205 12.81
Thermal Conducivity (w/mK)	70	.031 ^A	Compressive	MPa	0.8	1.7	3.6	9.0
Tensile Modulus(MPa)	310	180	strength	psi	116	246	522	1,305
Radiation Length(cm)	110 ^B	500 ^C	Tensile strength	MPa psi	1.6 232	2.2 319	3.7 536	6.8 986
A Source M Pebak (pots	suro it is 110)		Flexural strength	MPa psi	1.6 232	2.9 420	5.2 754	12.0 1,740
B. Rad Length of graphite	e adjusted for de	ensity	Shear strength	MPa psi	0.8 116	1.3 188	2.4 348	5.0 725
C. Needs verification. Fro	im a CDF note.		Elastic modulus	MPa psi	75 10,875	105 15,225	180 26,100	350 50,750
But Rad Length pro a \sim 2-3 mm thick f	bably woul oam core f	d require for K-foam	Shear modulus	MPa psi	24 3,480	42 6,090	70 10,170	150 21.750

Property	Units	Carbon Foam Grade L1	Carbon Foam Grade L1a	Carbon Foam Grade D1
Density	[g/cc]	0.38	0.34	0.48
Compressive Strength	MPa	3.4	1.7	2.5
Compressive Modulus	GPa	0.31	0.15	0.4
Tensile Strength	MPa	7.95	4.4	6.8
Tensile Modulus	GPa	0.31	0.19	0.31
Flexural Strength	MPa	3.2	2.1	2.5
Flexural Modulus	GPa	0.26	0.12	0.34
Shear Strength	MPa	0.67	0.54	0.89
Shear Modulus	GPa	0.09	0.06	0.16
Coefficient of Thermal Expansion	E-6/C @ 650°	3.0	1.72	0.69
Thermal Conductivity -Z	W/m⋅K	70	55	110
Electrical Resistivity -Z	μΩ·m	47.6	40.8	31.5
Average Pore Size	μM	600	500	650
Average Pore Volume	%	70	78	72

Stave Core Discussion

- Is a single piece all-CF core a viable option?
- Is rohacell a problem? Are there suitable replacements
- Stave concept vs present Atlas barrel support in terms of radiation length
 - Present barrel support has RL of .30 %
 - Foam core stave (CF+Rohacell) has RL of .35 %
 - = = > Not much difference ? Are there other missing items?

Other Stave Specifications

This Chart from Carl

Table I: Basic Stave Speci	fications (nominal)		
	Short stave	Long Stave	
Property			
Width	6.4 cm	12.8 cm	
length (nominal)	98 cm	192 cm	
detector width	6.4 cm	12.8 cm	
detector length	3 cm	10-12 cm	
detectors per side*	15-18	12-16	
gap between detector along the stave	2.4 cm	3 mm	
detector thickness	280 microns	300 microns	
number of strips	768	768	
strip pitch	80 microns	160 microns	
Power in front end chips (per hybrid)	3 watts	3 watts	
Power in silicon – no dose (per crystal)	1 milliwatt	2 milliwatt	
Power in silicon – high dose (per crystal)	1 watt	2 watt	
Maximum temperature at silicon	-25 C	-10 C	
Maximum temperature variation	<5 C	<5C	
Max detector position shift from nom Dy	30 microns	30 microns	
Max detector position shift from nom Dx	30 microns	30 microns	
Survey accuracy Sy	5 microns	5 microns	
Survey accuracy Sx	10 microns	5 microns	
Survey accuracy Sq	0.13 mRad	0,13 mRad	
Ladder sag maximum**	60 microns	60 microns	
Ladder sag stability***	25 microns	25 microns	

Stave Flatness Considerations

 $C:\home\atlas\stave\flatness.doc$

Some considerations that may influence flatness specification:

1. ΔZ , the error in z measurements

2. ΔX , the error in x measurements (here x is taken to be in the plane of the silicon but

perpendicular to direction of the strips).

3. wafer warp

4. Mounting

5. $\Delta F/\Delta S$, S = Sag, ΔF = flatness spec

6. Alignment.

7. Epoxy filler

8. Non straight (low momentum)tracks

1. ΔZ , the error in z measurements.

Largest error should occur at first short strip layer at very end, i.e. with R = 27 cm and L = 100 cm. For calculational simplicity, let $R \approx 25$ cm.

 $R/L = \Delta F/\Delta Z$, or $\Delta Z = L \Delta F/R = 4 \Delta F$.

Thus with a flatness specification of .002" = 50 um per 3 cm of length of stave (the length of a silicon detector), we would get

 $\Delta \mathbf{Z} = 200 \text{ um}$. (This compares to current Atlas Z resolution of 1.2 mm; what is the new required Z resolution?)

2. ΔX , the error in X measurements (here x is taken to be in the plane of the silicon but perpendicular to the direction of the strips).

The sketch shows the error for a straight (high momentum) track in the X direction due the rotation of the silicon by the Lorentz angle θ_L .

 $\theta_{\rm L} \approx 17^{\circ}$ (for a 2 Tesla field).

tan $\theta_{\rm L} = \Delta X / \Delta F$, or

 $\Delta X \approx 0.3 \Delta F.$

We are aiming for resolutions on the order of 80 um/ $\sqrt{12} \approx 23$ um. If we want the error to be less than the resolution (to avoid calibrating on a finer scale then a detector, then we want)

 $\Delta F < 23 \text{ um}/.3 \approx 75 \text{ um}.$

Other Details

Wafer Warp

- Hamamatsu quotes +/- 100 um. Seems large
- Are detectors "flattened" in current back-to-back gluing process?

Sag

- Carl notes 60 um. Is this necessary? How determine?
- We assume stability more important, and local flatness (Carl notes stability of 25 um.) How define stability?

Lorentz Angle

– Lorentz angle will increase from current 3.5° for electrons to about 17° for holes. Must we tilt staves this amount?