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•  Introduction, motivation, scope 
•  Parameters & design challenges 
•  Physics case 
•  Summary 

Outline 
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•  with emphasis on proton-proton and electron-positron high-
energy frontier machines.  

•  These design studies should be coupled to a vigorous accelerator 
R&D programme, including high-field magnets and high-
gradient accelerating structures,  

•  in collaboration with national institutes, laboratories and 
universities worldwide. 

•  http://cds.cern.ch/record/1567258/files/esc-e-106.pdf 

….“to propose an ambitious post-LHC accelerator project at 
CERN by the time of the next Strategy update”: 
d) CERN should undertake design studies for     

accelerator projects in a global context,  

Summary: European Strategy Update 2013 
Design studies and R&D at the energy frontier 

strategy adopted at Brussels in May 2013, during exceptional session 
of the CERN Council in presence of the European Commission 
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Which type of collider? 
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Forming an international 
collaboration to study:  
•  pp-collider (FCC-hh)       

à main emphasis, 
defining infrastructure 
requirements  

•  80-100 km infrastructure 
in Geneva area 

•  e+e- collider (FCC-ee) as 
potential intermediate step 

•  p-e (FCC-he) option 

~16 T ⇒ 100 TeV pp in 100 km 
~20 T ⇒ 100 TeV pp in 80 km 

Future Circular Collider Study – SCOPE  
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LHC 
27 km, 8.33 T 
14 TeV (c.m.) 

FCC-hh (alternative) 
80 km, 20 T 

100 TeV (c.m.) 

FCC-hh (baseline) 
100 km, 16 T 
100 TeV (c.m.) 

“HE-LHC” 
27 km, 20 T 
33 TeV (c.m.) 

Geneva 

PS 

SPS 

LHC 

           FCC-hh integration and options 
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easy access 
300 km from Beijing 
3 h by car 
1 h by train !

Qinhuangdao (秦皇岛） 

54 km  

70 km  

Yifang Wang 

CepC, SppC 

“Chinese Toscana” 

easy access 
300 km from Beijing 
3 h by car 
1 h by train !

CepC/SppC study (CAS-IHEP), CepC CDR end 
of 2014, e+e- collisions ~2028; pp collisions ~2042 
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                  Hadron collider FCC-hh parameters 

•  Energy    100 TeV c.m. 
•  Circumference   ~ 100 km (baseline) [80 km option] 
•  Dipole field (50 TeV)  ~ 16 T (baseline) [20 T option] 
•  Dipole field (3 TeV inject.)  ~ 1 T (baseline) [1.2 T option] 

•  Bunch spacing   25 ns [5 ns option] 
•  Bunch population (25 ns)  1x1011 p 
•  Emittance normalised  2.15x10-6m, normal. 
•  #bunches    10500 
•  Stored beam energy  8.2 GJ/beam 

•  # Interaction Points   2 main experiments 
•  β*     1.1 m [baseline] 
•  Luminosity   5x1034 cm-2s-1 [baseline] 

•  Synchroton radiation arc  ~30 W/m/aperture (fill. fact. ~78% in arc) 

Available from SPS/
LHC today 
3 TeV injector 
baseline for FCC-hh 
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Higgs physics 

The only know spin=0 elementary particle. 
We must study it as thoroughly as we can! 
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Di-higgs production at pp colliders 
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HH discovery channels at 100 TeV 
Biaggio Di Micco  
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From Higgs to Dark Matter 
Phil Harris (CERN) 
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Invisible Higgs decays 
Phil Harris (CERN) 
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Dark Matter at 100 TeV 

Ryu Sawada 
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Dissapearing track reach 

Ryu Sawada 

Pure Wino LSP 
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                  SUSY @ 100 TeV 
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                  Stop @ 100 TeV 
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à MSUSY = 1 – 9 TeV ?? 

à  that’s possibly outside of the  
LHC reach but within the FCC-hh 
reach!! 

                  A hint from the Higgs? 

Is there an upper limit on the 
stop mass in the MSSM? 
 
Yes, because mH = 125 GeV! 
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100 TeV Physics report 

CMG group meeting 

FCC-hh Physics Report (~ 650 pages) released last year 
arxiv:1606.00947 and 1606.09408 
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             Site study 97.5 km baseline 

J. Osborne & C. Cook 
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                  FCC-hh: high-field magnet R&D 

•  FHC baseline is 16T Nb3Sn technology for ~100 TeV c.m. in ~100 km 
 

Develop Nb3Sn-based 16 T dipole technology (at 4.2 K?),  
-  conductor developments 
-  short models with sufficient aperture (40 – 50 mm) and  
-  accelerator features (margin, field quality, protect-ability, cycled 

operation). 
 
Goal: 16T short dipole models by 2018/19 (America, Asia, Europe) 

Goal: Demonstrate HTS/LTS 20 T dipole technology: 
•  5 T insert (EuCARD2), ~40 mm aperture and accelerator features 
•  Outsert of large aperture ~100 mm, (FRESCA2 or other) 

•  In parallel HTS development targeting 20 T (option and longer term)            
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only a quarter is shown 

15-16 T: Nb-Ti & Nb3Sn  20 T: Nb-Ti & Nb3Sn & HTS 

“hybrid magnets” 
example block-coil layout 

                Key design issue: cost-optimized 
                  high-field dipole magnets 

Arc magnet system will be the major cost factor for FCC-hh 
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15-16 T: Nb-Ti & Nb3Sn  20 T: Nb-Ti & Nb3Sn & HTS                 16T magnet development timeline 
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•  Stored beam energy: 8 GJ/beam (0.4 GJ LHC)  = 16 GJ total 
  equivalent to an Airbus A380 (560 t) at full speed (850 km/h) 

 
Ø  Collimation, beam loss control, radiation effects: very important 
Ø  Injection/dumping/beam transfer: very critical operations 
Ø  Magnet/machine protection: to be considered from early phase 

                 FCC-hh: some design challenges 
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            A detector design? 
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Current detector baseline 
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Tracking performance 
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Muon performance 
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•  Here the name of the game is luminosity: as many collisions 
as possible  high beam current, small beam size. 

•  The energy reach of circular e+e- colliders is limited due to 
synchrotron radiation of charged particles on curved trajectory: 

 

        Lepton collider FCC-ee 

ΔE ∝ (Ekin/m0)4/ρ	

	


    mprot = 2000 melectr 
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                 Lepton collider FCC-ee parameters 
•  Design choice: max. synchrotron radiation power 50 MW/beam 

•  Defines the max. beam current at each energy  
•  4 Physics working points 
•  Optimization at each energy (bunch number & current, etc). 

Parameter Z WW H ttbar LEP2 
E/beam (GeV) 45 80 120 175 104 
I (mA) 1450 152 30 6.6 3 
Bunches/beam 16700 4490 1360 98 4 
Bunch popul. [1011] 1.8 0.7 0.46 1.4 4.2 
L/IP (1034cm-2s-1) 28.0 12.0 6.0 1.7 0.012 

•  Large number of bunches at Z and WW and H requires 2 rings. 
•  High luminosity means short beam lifetime (few mins) and requires 

continues injection. 
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Possible physics plan: 
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                 FCC-ee: RF parameters and R&D 

•  Synchrotron radiation power: 50 MW per beam 
•  Energy loss per turn: up to 7.5 GeV (at 175 GeV, t) 
•  System dimension compared to LHC: 

•  LHC 400 MHz  2 MV and ~250 kW per cavity, (8 cavities per beam) 
•  FCC-ee: ~600 cavities 20 MV / 180 kW RF  12 GV / 100 MW 

•  R&D Goal is optimization of overall system efficiency and cost! 
    1.  SC cavity R&D  large 𝑄↓0 , high gradient, acceptable cryo power! 

•  Recent promising results at 4 K with Nb3Sn coating on Nb at Cornell,  
•  800  ℃  ÷1400  ℃ heat treatment JLAB,  beneficial effect of impurities FNAL. 

    2.  High efficiency RF power generation from electrical grid to beam 
•  Amplifier technologies 
•  Klystron efficiencies >65%, alternative RF sources as solid state amplifier, etc. 

    3.  High reliability 
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Beside the collider ring(s), a booster of the same size (same tunnel) 
must provide beams for top-up injection 

o  same RF voltage, but low power (~ MW) 
o  top up frequency ~0.1 Hz 
o  booster injection energy ~5-20 GeV 
o  bypass around the experiments 

injector complex for e+ and e- beams of 10-20 GeV 
o  Super-KEKB injector ~ almost suitable  

                 FCC-ee top-up injector 
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Project 
Kick-off meeting: 11th Nov. 2013 (Daresbury) 

CDR and Cost Review 2018 

               CERN roadmap and FCC planning 

20
18

 

Kick-off meeting February 2014 

CDR and Cost Review for 2018 

Study 

FCC 
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For comparison: 
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• There are strongly rising activities in energy-frontier 
circular colliders worldwide.  

• The FCC collaboration is being formed with CERN as 
host laboratory, to conduct an international study for the 
design of Future Circular Colliders (FCC). 

 

• Worldwide collaboration in physics, experiments and 
accelerators will be essential to advance and reach the 
goal of a CDR by 2018. 

 

• FCC presents challenging R&D requirements in SC 
magnets, SRF and many other technical areas. 

 

•  Need to establish global collaboration and use all 
synergies to move forward! 

Conclusions 


