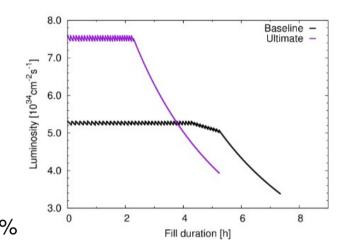

FCC-hh: Pile-up & PU Mitigation Studies

Zbyněk Drásal CERN

Overview

- Pile-up numbers: HL-LHC versus FCC-hh
- Effective pile-up rate & primary vertexing
 - Comparison CMS versus FCC v4.01
 - Effect of luminous region size
- Summary & Plans



Pile-up Numbers: HL-LHC

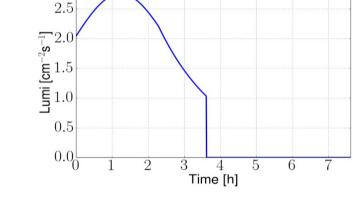
- How to estimate pile-up limits for FCC-hh?
 - → numbers from G.Arduini's ECFA talk on HL-LHC luminous region

$$\langle \mu \rangle = \frac{\sigma_{inel} \cdot L}{n_B \cdot f_r}$$

- $\sigma_{inel} \sim 85$ mb @ 14TeV HL-LHC
- Tunnel length = 26.659 km
- $n_{_{\rm B}} = 2748 \rightarrow \text{N}$ bunches (2808 for LHC)
- Bunches fill-up factor $f_{up} = 2748/3554 \sim 77.3\%$
- $f_r = 11.245 \text{kHz} \rightarrow \text{revolution frequency (nominal LHC)}$
- Baseline Luminosity (levelled) = 5.3 x 10³⁴ cm⁻²s⁻¹
- Ultimate Luminosity (levelled) = 7.6 x 10³⁴ cm⁻²s⁻¹

Pile-up Numbers: HL-LHC

- How to estimate pile-up limits for FCC-hh? • 8.0 Baseline Ultimate Luminosity [10³⁴ cm⁻²s⁻¹] 9.0 → numbers from G.Arduini's ECFA talk on HL-LHC luminous region σ_{inel} ~ 85mb @ 14TeV HL-LHC $\langle \mu \rangle = \frac{\sigma_{inel} \cdot L}{n_B \cdot f_r}$ • Tunnel length = 26.659 km 4.0 • **n**_R = 2748 → N bunches (2808 for LHC) 3.0 2 6 0 4 8 • Bunches fill-up factor $f_{up} = 2748/3554 \sim 77.3\%$ Fill duration [h] • **f** = **11.245kHz** → revolution frequency (nominal LHC)
 - Baseline Luminosity (levelled) = 5.3 x 10³⁴ cm⁻²s⁻¹
 - Ultimate Luminosity (levelled) = 7.6 x 10³⁴ cm⁻²s⁻¹
 - Luminosity variations between bunches ± 8% (see e.g. ATL-PHYS-PUB-2013-014)
 - Pile-up: μ is Poisson distributed \rightarrow quantify limits by 95% confidence interval (σ ~1.96 \sqrt{N})
 - → HL-LHC Baseline: $<\mu>$ = (146 ± 12) ± 25 with $\sigma_{inel} \sim 81 \text{mb}$ (TOTEM), $n_b \sim 2808$, $L \sim 5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1} \rightarrow <\mu>$ = [(128 ± 10) ± 23] → HL-LHC Ultimate: $<\mu>$ = (209 ± 17) ± 29 (with $\sigma_{inel} \sim 81 \text{mb}$ etc. $\rightarrow <\mu>$ = [(184 ± 15) ± 28])

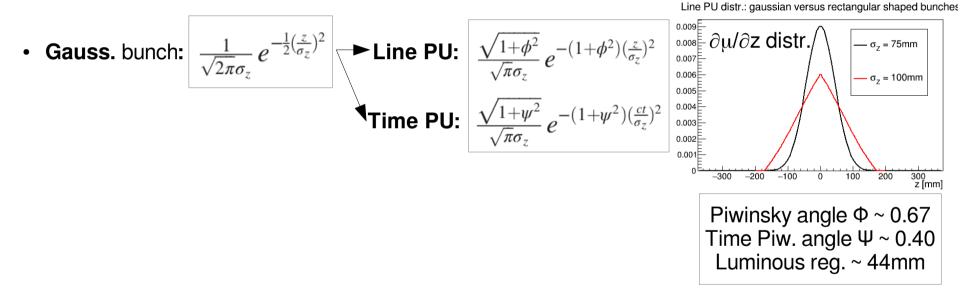

Pile-up Numbers: FCC-hh

• How to estimate pile-up limits for FCC-hh?

→ numbers extrapolated (plot from D.Schulte's talk at FCC Week)

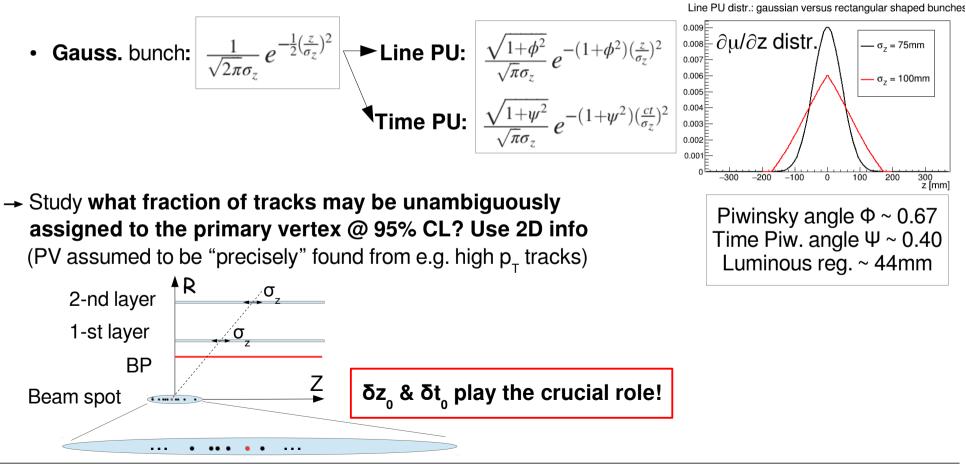
$$\langle \mu \rangle = \frac{\sigma_{inel} \cdot L}{n_B \cdot f_r}$$

- $\sigma_{inel} \sim 108 \text{mb} @ 100 \text{TeV FCC-hh}$
- Tunnel length = 97.500 km
- $n_{_{\rm B}} = 10050$ (using $f_{_{\rm up}}$ factor)
- **f**_r = **3.075kHz** (assuming FCC tunnel)
- Ultimate Luminosity ~ 30 x 10³⁴ cm⁻²s⁻¹



 $\times 10^{35}$

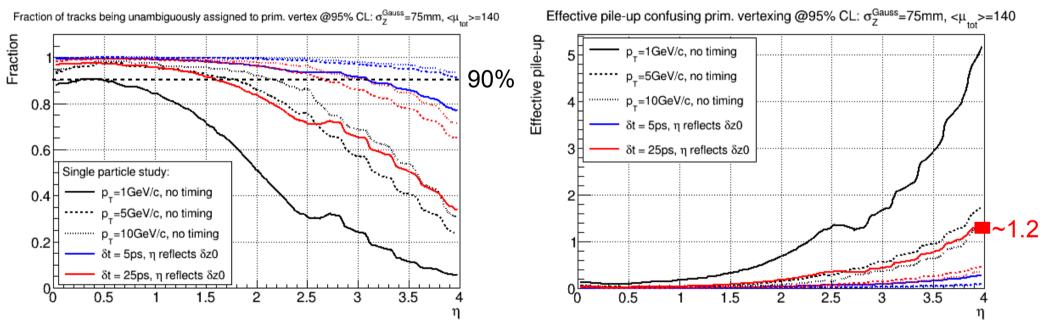
- Levelled luminosity (assuming loss in int. L ~20%) = 15 x 10³⁴ cm⁻²s⁻¹
- Assume the same luminosity variations between bunches $\pm 8\%$
- Pile-up Poisson distr.: quantify limits by 95% confidence interval (σ ~1.96 \sqrt{N})
 - → FCC-hh Ultimate: <µ> = [(1048 ± 84) ± 66] → Max O(1200), Avg ~ O(1000)
 - → FCC-hh Levelled: <µ> = [(524 ± 42) ± 47] → Max O(600)


Vertexing @ PU=1000 & Timing Information

- How the pile-up (PU)~1000 degrades primary vertexing? Does the timing info help?
 - → Dependent on scenario for luminous region (Gauss, "rectangular",...) → simulate **1000 PU** vertices according to Gaussian (HL-LHC) Line & Time PU densities (c.f.: PhysRevSTAB.17.111001)

Vertexing @ PU=1000 & Timing Information

- How the pile-up (PU)~1000 degrades primary vertexing? Does the timing info help?
 - → Dependent on scenario for luminous region (Gauss, "rectangular",...) → simulate 1000 PU vertices according to Gaussian (HL-LHC) Line & Time PU densities (c.f.: PhysRevSTAB.17.111001)

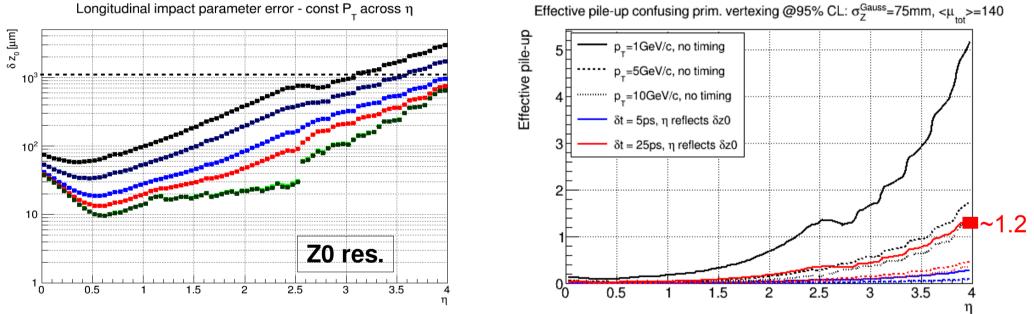


Z.Drasal, FCC-hh detector meeting (5th July 2017)

CMS Ph2: Effective PU Rate @ PU=140

• Compare FCC-hh to HL-LHC conditions (PU~140), using e.g. CMS Ph2 upgrade layout

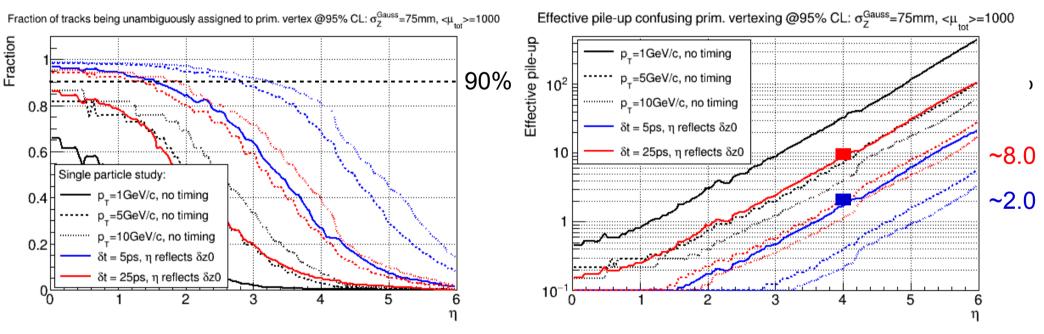
HL-LHC scenario @ PU=140 CMS Ph2 Upgr. tracker


Comment:

- Error on TOF ~ 1.5 – 3ps (η dependent) \rightarrow negligible wrt 25ps (hence, not included into calculations)

CMS Ph2: Effective PU Rate @ PU=140

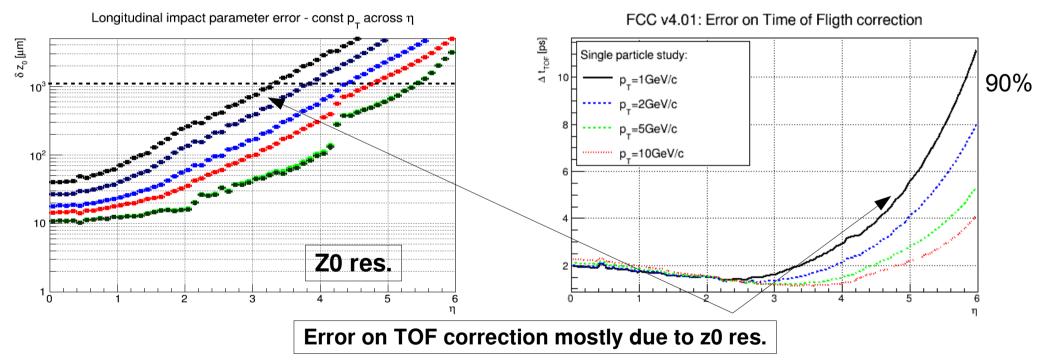
• Why such a shape of effective PU rate? Mostly driven by **z0 res.**


HL-LHC scenario @ PU=140 CMS Ph2 Upgr. tracker

FCC v4.01: Effective PU Rate @ PU=1000

Compared to FCC-hh (PU~1000)?

FCC-hh scenario @ PU=1000 Tilted layout


Comment: Not taken into account non-negligible error on time of flight correction (see other slide)

Conclusion: 2D vertexing (time & z) essential, but may not be sufficient to mitigate PU effect (even up-to η =4.0, unless $\delta t_0 \sim 5ps$ assumed)!

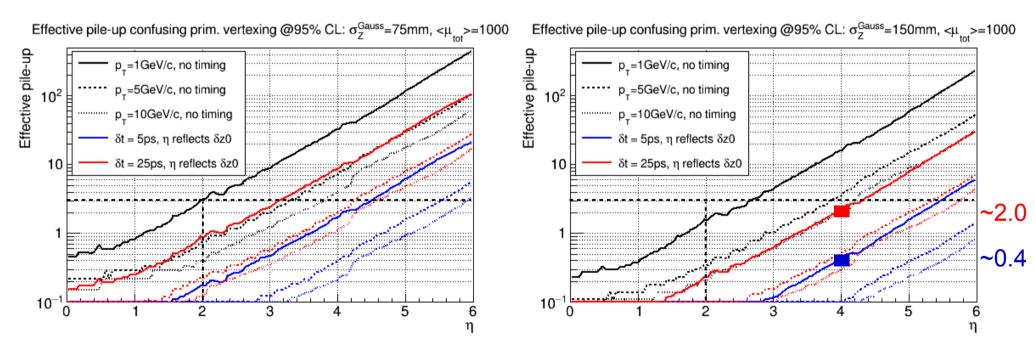
FCC v4.01: Effective PU Rate @ PU=1000

• What is the effect of TOF correction?

FCC-hh scenario @ PU=1000 Tilted layout

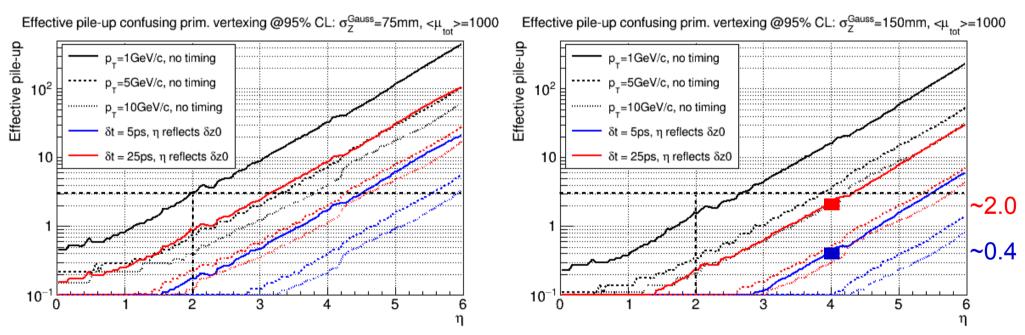
→ Non-negligible effect if one aims for t0 res. ~ 10ps (Remember: time must be propagated along track to vertex position) → Several timing layers necessary to mitigate the error on TOF!

Pile-Up Mitigation


- How one can possibly mitigate the PU?
 - Improve vertexing performance:
 - t0 res. → hard, at the technology limits
 - **z0 res.** \rightarrow hard, limited by beam-pipe material, namely at high eta \rightarrow crossing @ shallow angle

Pile-Up Mitigation

- How one can possibly mitigate the PU?
 - Improve vertexing performance:
 - t0 res. → hard, at the technology limits
 - **z0 res.** \rightarrow hard, limited by beam-pipe material, namely at high eta \rightarrow crossing @ shallow angle
 - **Extend luminous region** \rightarrow PU vertices better separated in space & time, does it help? How much?


Effect of Luminous Region Size on Effective PU

- Studied Gaussian distributed PU densities with bunch $\sigma_2 = 75$ mm versus 150mm
 - Does extension of luminous region decreases effective PU rate? By how much?
 - Lum. region size: $\sigma_{\text{lum.region z}} \sim \sigma_z / \sqrt{2}$

Effect of Luminous Region Size on Effective PU

- Studied Gaussian distributed PU densities with bunch $\sigma_2=75$ mm versus 150mm
 - Does extension of luminous region decreases effective PU rate? By how much?
 - Lum. region size: $\sigma_{\text{lum.region z}} \sim \sigma_z / \sqrt{2}$

→ Effective PU rate decreases by the same factor f as one increases σ_z if z0 information used only, by f² if both t0 & z0 used (unless time & line PU correlated)!

Summary & Plans

• Pile-up numbers calculated: What values should be taken as reference?

Summary & Plans

- Pile-up numbers calculated: What values should be taken as reference?
- Studied effective pile-up versus luminous region size:
 - → Effective pile-up rate seems manageable only up-to η~4, but just by using 2D vertexing (time & z). In addition, extreme timing res. ~ 5ps has to be assumed, hence several timing layers necessary
 - → Effective PU may be significantly decreased by increasing size of luminous region, increase in size by factor f results in a quadratic decrease (1/f²) in effective PU, if both timing & spatial information is being used

Summary & Plans

- Pile-up numbers calculated: What values should be taken as reference?
- Studied effective pile-up versus luminous region size:
 - Effective pile-up rate seems manageable only up-to η~4, but just by using 2D vertexing (time & z). In addition, extreme timing res. ~ 5ps has to be assumed, hence several timing layers necessary
 - → Effective PU may be significantly decreased by increasing size of luminous region, increase in size by factor f results in a quadratic decrease (1/f²) in effective PU, if both timing & spatial information is being used
- Plans:
 - → Study different PU scenarios (ultimate versus levelled)
 - → To get more realistic estimates on effective PU & comparable plots to full simulations, convolve pT curves with min bias dpt/dŋ distr. & study 1 real physics case (e.g. Z'->µµ, tt)
 - → To understand the effect of size of luminous region on effective PU, several scenarios need to be modelled:
 - Gaussian versus rectangular shape of bunches
 - Different bunch sizes (75mm as a reference, 120mm as a current limit & 200mm as an ultimate limit)