UPDATE ON CALORIMETRY

> M. Aleksa, J. Faltova, C. Helsens, A. Henriques, C. Neubüser, **A. Zaborowska**

> > $5 \ {\rm July} \ 2017 \\ {\rm FCC} \ {\rm hadron} \ {\rm detector} \ {\rm meeting}$

Electromagnetic calorimeter

- \blacksquare extending the study up to higher η
- correction for the upstream material using the energy deposited in the first layer: $E_{rec} = E_{cluster} + E_{upstream}$
- \blacksquare material correction dependent on η
- optimisation of longitudinal layers:
 - \square 1 x 2 cm
 - $\square \ 7 \ge 9 \ \mathrm{cm}$

0

Correction for upstream material

Correction for the material in front of calorimeter:

$$E_{rec} = E_{upstream} + E_{cluster}$$

$$\begin{split} E_{upstream} &= P_0 + P_1 \cdot E_{firstLayer} \\ &= P_{00} + P_{01} \cdot E_{beam} \\ &+ \left(P_{01} + \frac{P_{11}}{\sqrt{E_{beam}}}\right) \cdot E_{firstLayer} \end{split}$$

 $^{2}/_{9}$

Impact of corrections on energy resolution

- no correction \rightarrow just scaled energy deposits (to E_{beam})
- sampling fraction correction → calibration of deposited energy with sampling fraction calculated for 8 layers
- upstream material correction \rightarrow additional to sampling fraction correction

Energy resolution up to $\eta = 1$

- correction for the varying sampling fraction and for the upstream material
- first layer of 2 cm for upstream material correction
 - \square + 7 layers of 9 cm,
 - \square making total of 65 cm.
- in magnetic field B = 4 T

Electromagnetic calorimeter design optimisation: inclination angle

Energy resolution for different inclination angles

 $\begin{array}{l} {\rm Preliminary\ results\ indicate\ the\ higher\ the\ inclination\ angle\ the\ better\ (in\ 20^\circ\ -\ 60^\circ\ range).} \\ {\rm On-going\ work\ on\ finding\ the\ optimal\ inclination\ angle.} \end{array}$

 $^{6}/_{9}$

Electromagnetic calorimeter: noise estimation

- \blacksquare Electronic noise scales linearly with the capacitance $C_d = \varepsilon A/d$
- Distance $d = 0.1 \text{ mm} \Rightarrow$ larger noise than for the simple geometry (d = 2 mm)
- Noise increases with pseudorapidity and longitudinal layer

- \blacksquare Electronic noise in cells considered as uncorrelated added at digitisation
- Pile-up noise in neighbouring cells highly correlated pile-up noise contribution added to reconstructed objects

Hadronic calorimeter: η coverage

- good η coverage, dip $\#\lambda$ between $\eta = 1.5 2.0$ requires optimisation
- \blacksquare longer HCal EB for better η coverage
- proposition of extending HCal EB by 50 cm in Z (both in FCCSW and FLUKA)
- \blacksquare still 50 cm distance to muon wheel after enlargement

- Revathy Alagaraisamy working on the PCB readout for the electromagnetic calorimeter
- \blacksquare Hamad Alhendi working on $\pi^0\to\gamma\gamma$ reconstruction, later on $H\to\gamma\gamma$

Plans

Anna Zaborowska

- Electron reconstruction with the noise in EMCal
- Further segmentation optimisation
- Topo-clustering algorithm for hadron (jet) reconstruction

- Revathy Alagaraisamy working on the PCB readout for the electromagnetic calorimeter
- \blacksquare Hamad Alhendi working on $\pi^0\to\gamma\gamma$ reconstruction, later on $H\to\gamma\gamma$

Plans

- Electron reconstruction with the noise in EMCal
- Further segmentation optimisation
- Topo-clustering algorithm for hadron (jet) reconstruction

- Revathy Alagaraisamy working on the PCB readout for the electromagnetic calorimeter
- \blacksquare Hamad Alhendi working on $\pi^0\to\gamma\gamma$ reconstruction, later on $H\to\gamma\gamma$

Plans

- Electron reconstruction with the noise in EMCal
- Further segmentation optimisation
- Topo-clustering algorithm for hadron (jet) reconstruction

- Revathy Alagaraisamy working on the PCB readout for the electromagnetic calorimeter
- \blacksquare Hamad Alhendi working on $\pi^0 \to \gamma\gamma$ reconstruction, later on $H \to \gamma\gamma$

Plans

- Electron reconstruction with the noise in EMCal
- Further segmentation optimisation
- Topo-clustering algorithm for hadron (jet) reconstruction

