FCC hadron detector meeting Oct. 11, 2017

Muon Detector Studies

Shoji Asai, Yuji Enari, Masaya Ishino, Tatsuya Masubuchi, Yasuyuki Okumura, Tomoyuki Saito, Ryu Sawada, Junichi Tanaka, <u>Koji Terashi</u>

ICEPP, University of Tokyo

Introduction (to our group)

Strong participation to both detectors and physics in ATLAS experiment since the beginning

- Muon trigger chamber (TGC) construction and operation
- Run coordination of ATLAS experiment
- Upgrade on NSW, Electronics, LAr trigger (Phase-I), MDT trigger (Phase-II)
- Higgs discovery for $H \rightarrow \gamma \gamma$ in Run 1, evidence for $H \rightarrow \tau \tau$ /bb at Run 2
- SUSY searches : squark/gluino, stop, EW gauginos/higgsinos
- ► Exotics searches : high-p_T tops/W/Z, coordination

Plan to contribute to

- ► conceptual design of muon detectors and muon performance at high-p_T
- ▶ sensitivity studies for SUSY electroweak gauginos (→FCC Week at Berlin)
- sensitivity studies for HH production

for CDR

Any feedback appreciated!!

FCC_{hh} Reference Design for CDR

- 4T 10m barrel solenoid
- 4T forward solenoids
- No shielding coil
- "Barrel muon" region :
 6.5m<r<9.0m, |z|<13 m

Muon detector design goal

 $<\!10\%$ standalone (combined) momentum resolution up to $\sim\!\!3(20)\,\text{TeV}$ with $50\mu m$ position and $70\mu rad$ angular resolution

Our initial goal is to confirm this using "ATLAS-like" muon detector with reference geometry and FCCSW simulation

FCChh Muon Detector

Status :

DD4hep description of muon detector & geometry in FCCSW 0.8.1

- Only Barrel region is considered with SimpleLayeredCylinder geometry
- Implementing ATLAS "MDT-like" (w/o tube) gas detector :

Status :

- DD4hep description of muon detector & geometry in FCCSW 0.8.1
 - Only Barrel region is considered with SimpleLayeredCylinder geometry
 - Implementing ATLAS "MDT-like" (w/o tube) gas detector :
 - 2 or 3 stations, 2 layers per station, 3-4 sub-layers per layer

#stations	distance between stations	#layers/ station	distance between layers	#sub-layers
2	1.2m	2	12, 22cm	4/4/3/3
2	2.4m	2	12, 22cm	4/4/3/3
3	1.1m	2	12, 22, 22cm	4/4/3/3/3/3
		5		

FCChh Muon Detector

Status :

- DD4hep description of muon detector & geometry in FCCSW 0.8.1
 - Only Barrel region is considered with SimpleLayeredCylinder geometry
 - Implementing ATLAS "MDT-like" (w/o tube) gas detector :
 - 2 or 3 stations, 2 layers per station, 3-4 sub-layers per layer
 - first 2 layers consist of 4 sub-layers; the rest 3 sub-layers
 - Each sub-layer made of Al (0.3mm) Gas (2cm, 93% Ar, 7% CO₂) Al (0.3mm)

FCChh Muon Detector

ر 1008ع . 至6000日**10 GeV Considered now** 4000 2000 -2000 -4000 -6000 -8000 -6000 -4000 4000 6000 8000 2000 x [mm]

All hits shown

Status :

- Test momentum measurement in full simulation (FCCSW 0.8.1)
 - Single muon events:
 - Single μ^- with a fixed energy at $\eta=0, \phi=0$
 - Beam pile, ID (TkLayout option 3), ECal, HCal, Solenoid + Muon detector
 - 4 Tesla field within R = 6 m
 - Muon standalone (based on angle at exit from magnetic field)
 - Only hits used \rightarrow Need to develop digitization scheme
 - Preliminary calorimeter reconstruction for muon energy deposits

Muon Reconstruction

Extract muon p_T from angle

- Calculate average hit position in each of 4 layers
- Perform linear fit and extrapolate the fit to the point where the muon exits from the magnetic field
- Get the angle ϕ at exit
- Get p_T from $p_T = 0.3B\rho$ and $cos(\pi/2-\phi) = R/(2\rho)$

Remarks

- Use hits; No digitization yet
- "Average" hit could be inaccurate
- No return field in muon spectrometer region (i.e, straight muon track)

"Ideal" Momentum Resolution

Many low p_T events observed → Appear to be caused by displaced hits

- displaced hits seem to have
 - no strong correlation with hit energy
 - no strong correlation with calorimeter energy deposit (next slide)

If displaced hits are removed (red histograms), the fit can converge better

 \rightarrow To be understood

"Realistic" Momentum Resolution

Smeared *event-by-event* (x, y) hit positions separately by adding a shift of Gauss(0, **100µm**) per layer

- No significant effect on p_T resolution at $p_T^{\mu} < 100$ GeV
- ▶ p_T resolution : ~3.4(**2.9**)% → ~4.2(**20.1**)% at $p_T^{\mu} = 1(10)$ TeV

"Realistic" Momentum Resolution

Smeared *event-by-event* (x, y) hit positions separately by adding a shift of Gauss(0, **50µm**) per layer

- No significant effect on p_T resolution at $p_T^{\mu} < 100$ GeV
- ▶ p_T resolution : ~3.4(**2.9**)% → ~3.7(**11.3**)% at $p_T^{\mu} = 1(10)$ TeV

Muon Momentum vs Calorimeter Energy Deposit

Low p_T events have no strong correlation with calorimeter energy deposit Fraction of lower p_T events around the peak is correlated with calorimeter energy deposit

→ Strategy to reconstruct full muon energy needed

"Combined" Momentum Resolution

(Naive) combined MS+Calo momentum = $p_T^{reco}(\mu) + E_{cell}(ECal+HCal)$

"Realistic Combined" Momentum Resolution

(Naive) combined MS+Calo momentum = $p_T^{reco}(\mu) + E_{cell}(ECal+HCal)$

Smeared *event-by-event* (x, y) hit positions separately by adding a shift of Gauss(0, **50µm**) per layer

▶ p_T resolution : ~3.7(**11.3**)% → ~3.6(**11.2**)% at $p_T^{\mu} = 1(10)$ TeV for MS-only → MS+Calo

Different Muon Detector Configurations

1 TeV 10 TeV 3.4% 2.8% 3.9% 3.2% 3.4% 2.8%

No large difference...

Different Muon Detector Configurations

Combined reconstructed muon momentum

Smeared *event-by-event* (x, y) hit positions separately by adding a shift of Gauss(0, **50µm**) per layer

	1 TeV	10 TeV
2 stations 1.2m	3.6%	11%
2 stations 2.4m	11%	29%
3 stations 1.1m	3.6%	12%

Significantly worse resolution for 2 stations (2.4m apart)

Next Steps

Baseline trigger and muon reconstruction

- Muon reconstruction
 - 1) standalone (close to baseline?)
 - 2) combined (ID+Calo+Muon)

→ ID+muon tracking + calorimeter energy reconstruction

Next Steps

Baseline trigger and muon reconstruction

- Muon reconstruction
 - 1) standalone (close to baseline?)
 - 2) combined (ID+Calo+Muon)
 - → ID+muon tracking + calorimeter energy reconstruction
- Trigger
 - 1) timing resolution (bunch-crossing identification)
 - 2) fast and coarse tracking capability
 - → Considering RPC-like gas chamber as baseline for 25 ns
 - A new idea/technique likely needed for 5 ns (beyond CDR?)

Next Steps

Baseline trigger and muon reconstruction

- Muon reconstruction
 - 1) standalone (close to baseline?)
 - 2) combined (ID+Calo+Muon)
 - → ID+muon tracking + calorimeter energy reconstruction

Trigger

- 1) timing resolution (bunch-crossing identification)
- 2) fast and coarse tracking capability

\rightarrow Considering RPC-like gas chamber as baseline for 25 ns

A new idea/technique likely needed for 5 ns (beyond CDR?)

Technology

Material (gas, ...), Baseline readout (granularity)

Baseline design

- #layers, layer distance, sub-layer structure, ...
- Forward region
 - 1) time resolution, high-rate capability
 - 2) decreasing readout pitch with increasing η for rate reduction?
 - 3) tolerance for high radiation level 19

Backup

Muon Detector Geometry

 \Rightarrow BR(ATLAS)/BR(FCChh) = 1.23*2 / (5.45*4) = 0.11

 $p_T = 0.15BR/cos(\pi/2-\phi)$ $\Rightarrow 10 \text{ TeV}$ at FCChh ~ 1.1 TeV at ATLAS (for same angle resolution)

Single muon simulation

- Single μ⁻ with a fixed energy and angle (η=0, φ=0)
- Beam pile, ID (TkLayout option 3), ECal, HCal, Solenoid + Muon detector
- ▶ 4 Tesla field within R = 6 m

Multiple scattering

- x~130X₀ at η=0
- $\Rightarrow \Delta \theta \simeq 0.0136/p_T \sqrt{x/X_0} = 15 \text{ mad} (p_T = 10 \text{ GeV})$
 - $\Delta y \simeq 100 \text{mm}$ at 1st layer

All hits shown (no energy threshold applied)

All hits shown (no energy threshold applied)

0

0

Many hits present far away from the impact point

