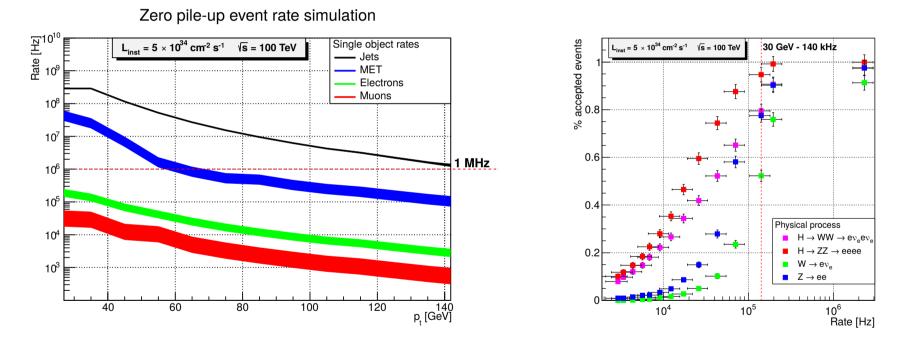


FCC trigger rate estimation Plans and status

<u>Simone Bologna</u>, Jim Brooke, Dave Newbold, Paris Sphicas simone.bologna@cern.ch University of Bristol & CERN

11 October 2017



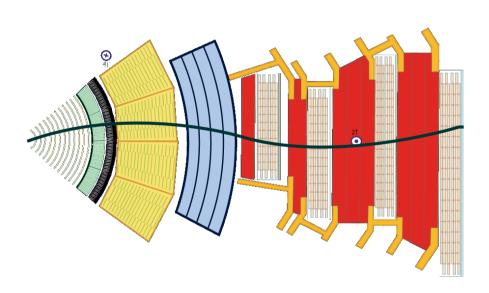
- How can we determine the readout architecture of a FCC-hh detector?
- We need to know:
 - Raw data rates from the various sub-detectors
 - Trigger rates
- Different assumptions can be made on the trigger architecture
- In this talk, we will look at the trigger rate estimation

Rate estimation at FCC-week

- At the FCC-week we have presented a first estimation of the trigger rates
 - Link to the slides of the talk

• We are now working on a more solid and general method to estimate trigger rates at FCC

- Finding a consistent parametrisation of CMS level-1 trigger (L1T) to simulate trigger-level objects based on generator-level ones
 - E.G. pt resolution
 - Extrapolate it to FCC
 - Some parameters might be assumed constant, some of them might need some re-working
- Perform an estimation for muon, electron, photon, jet, and MET rate
- Modelling and estimating rates for trigger architectures with and without tracker, for comparison
 - Focussing on tracker-less architecture at the moment

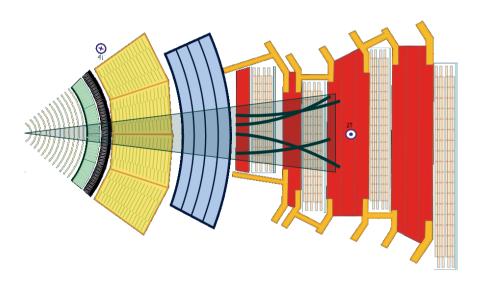

- We consider the main contributions to each object rate
 - For instance, real hadron jets are expected to be the main contribution to trigger-level jets
- Corresponding trigger objects are generated by applying a smearing to the generator-level objects originating it
 - Parametrisation is obtained by matching generator-level objects to trigger level ones
 - For instance, trigger-level jets can be obtained from generator-level ones by applying a smearing
 - We employ CMS full-simulations to compute those parameters
 - We will need CMS collaboration approval to show our input data
- Validity of the parametrisation is ensured through closure tests on object distributions and trigger rates

Muons (1/3)

What are the main contributions to the muon trigger rate?

1. Muons from prompt quark decays (b and c)

Mainly in the high-pt region

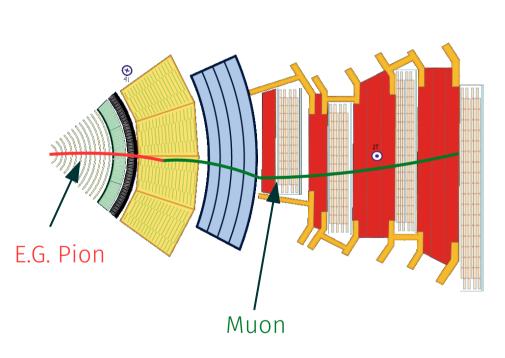

- L1T Muons obtained in Delphes simulation by smearing generator-level muons
- Parameters computed from genmuon and L1T-muon pairs in CMS full-sim
- Parameters we are interested in:
 - Resolution as a function of pt and eta
 - Acceptance as a function of pt and eta

Muons (2/3)

What are the main contributions to the muon trigger rate?

2. Jet punch-through

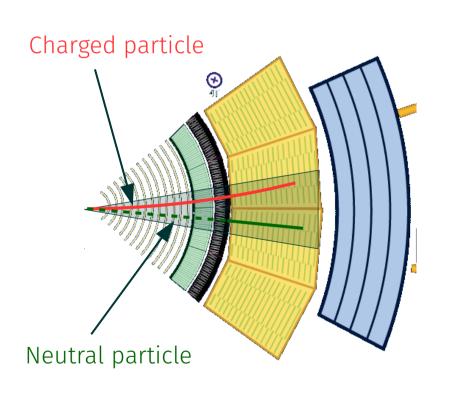
Mainly in the low-pt region


- L1T-muon obtained in Delphes simulation from gen-jets
- Parameters obtained from L1T-muon and gen-jet pairs in CMS full-sim
- Parameters we are interested in:
 - Punch-through probability as a function of jet pt and eta
 - L1T-muon pt distribution as a function of jet pt and eta
- Detector-dependant

Muons (3/3)

What are the main contributions to the muon trigger rate?

3. Non-prompt in-flight decay of particles



- Generate in-flight decays and smear the decay muon in Delphes
- Parameters we are interested in:
 - Resolution as a function of pt, eta, and vertex position
 - Acceptance as a function of pt, eta, and vertex position
- Will be looking at this process only after prompt muon and punch-through have been considered
 - Might be negligible

What are the main contributions to the electron and photon trigger rate?

Charged and neutral particles from hadronic jets



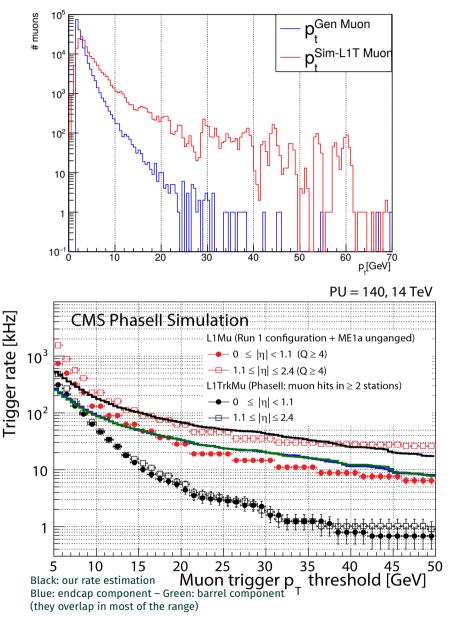
- Obtained in Delphes simulation from gen-jets
- Parameters computed from L1Telectron/photon and jet pairs in CMS full-sim
- Parameters of interest:
 - Probability that a jet will originate a trigger-level e/gamma, based on the jet pt and eta
 - Based on the jet pt and eta, distribution of the generated objects
- In a tracker-less trigger electrons and photons contribute to the same rate

What are the main contributions to the jet trigger rate?

Hadronic jets

- L1T-jets obtained in Delphes simulation by smearing generator-level jets
- Parameters computed from genjet and L1T-jet pairs in CMS fullsim
- Parameters we are interested in:
 - Resolution as a function of pt and eta
 - Acceptance as a function of pt and eta

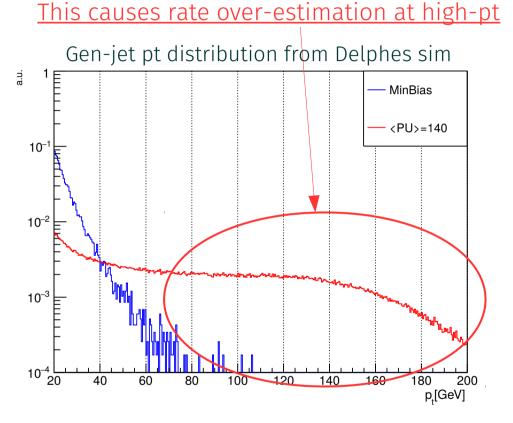
Status



- Muons:
 - Prompt decays: initial parametrisation and trigger rate has been obtained
 - **Punch-through**: first look to muon-jet pairs
 - In-flight decays: not yet started (might not be necessary)
- Electrons and photons, initial parametrisation obtained and first look at the trigger rate
- Jets, first look to jet-genjet pairs

A look at the muon trigger rates at PU 140

- Trigger rate obtained from smearing generator-level muons (SimL1TMuon) in pile-up 140 events produced in FCCSW has been compared against CMS public results [1]
- First estimation shows we are headed in the right direction
 - Interesting match between the rates in the 15-35 GeV region
 - Below 15 GeV: probably jet punchthrough becomes dominant
 - Above 40 GeV: not clear if some other physical process is contributing to the rate
 - We need to introduce the eta dependency in our parametrisation



[1] <u>https://cds.cern.ch/record/2020886</u>, page 202

FCC trigger rate estimation - Plans and status, Simone Bologna - 11 October 2017

- Rates at PU 140 are too high
- Problem: Momentum of the genjets in Delphes gets shifted towards high-pt as the pile-up increases
 - This affects L1T-jets, punchthrough and every other estimation based on gen-jets

Is this a known issue? How do the analysis groups approach the jets at high pile-up?

- Resolve issue with gen-jets
- Obtain parametrisation for punch-through muons
- Consider CMS Phase-2 trigger (i.e. w/ tracker)
- Extrapolate to FCC
 - Acceptance is known
 - Trigger pt resolution can be estimated from known offline resolution estimates
 - Punch-through? Can we try to scale from CMS by the material budget?
 - Can we take E/Gamma probability from CMS?
- Include the parametrisation in the Delphes card

- We have presented a plan to estimate trigger rate via parametrisation obtained from CMS
- First parametrisation of trigger muons has been obtained and agrees reasonably well with CMS Run-1
- Parametrisation of electrons, photons, jets, and punch-through muons is delayed due to a feature of gen-jets in FCCSW
- Next step is to obtain parameters from CMS Phase-2 (inc. Tracker) and extrapolate to FCC
- Input from ATLAS would be interesting
- Our expected schedule:
 - Finalise CMS parameterisation by mid November (and obtain approval)
 - First FCC rates by early December

Backup

- Once this curves have been obtained, an hit-and-miss Montecarlo has been applied to compute from generator-level muon momentum a trigger-level muon (called SimL1T Muon) momentum distributed in the same way as in CMS L1T:
 - 1) The delta pt distribution is first normalised by dividing it by the number of entries
 - 2) A pair of values (x, y) is generated
 - 3) If y is lower than the content of the histogram bin at the x, that x is added to gen-level muon momentum to obtain a L1T muon momentum
 - 4) If not, a new pair is generated until 3) is verified