

Future Machine Challenges

D. Schulte, CERN

Linear Colliders

Compact Linear Collider (CLIC)

 Stages at 380, 1500 and 3000 GeV

International Linear Collider ILC

- 500 GeV
- 250 GeV being discussed

				· P
1	540 klystrons 20 MW, 148 μs drive beam accele 2.4 GeV, 1.0 GHz	Drive Beam	circumferences delay loop 73 m CR1 293 m CR2 439 m 2.4	540 klystrons 20 MW, 148 μs eam accelerator GeV, 1.0 GHz
	2.5 km	delay loop CR1 CR2	CR2 CR1 delay loop decelerat	2.5 km for, 25 sectors of 878 m
	BC2 TITLE YTTER	BDS 2.75 km	BDS ******	BC2
	TA e- main linac, 12	GHz, 72/100 MV/m, 21 km	e ⁺ main lina	IC TA
	Permons Constanting of the second	50 km	booster linac 2.86 to 9 GeV Main B	eam
_	and a state of the	e- injector 2.86 GeV 427 m	e ⁺ DR 427 m 389 m e ⁺ injector 2.86 GeV	
	ILC	CLIC 380 GeV	CLIC 3 TeV	
	500 GeV	380 GeV	3000 GeV	

Parameters	ILC	CLIC 380 Gev	CLIC 3 IEV
C.M. Energy	500 GeV	380 GeV	3000 GeV
Peak luminosity	1.8 x10 ³⁴ cm ⁻² s ⁻¹	1.5 x10 ³⁴ cm ⁻² s ⁻¹	6 x10 ³⁴ cm ⁻² s ⁻¹
IP beam size	474 nm / 6 nm	150 nm / 3 nm	40 nm / 1 nm
Beam power	10.5 MW	5.6 MW	28 MW
E gradient	31.5 MV/m	72 MV/m	72/100 MV/m
Length	31 km	11 km	50 km

Future Accelerator Challenges, CERN July 2017

Lepton Colliders: Ring vs. Linear Collider

accelerating cavities

Acceleration

ILC

1.3 GHz, 1m-long, superconducting $Q_0=O(10^{10})$

Effective gradient 31.5 MV/m \Rightarrow Limited by degradation of Q₀ \Rightarrow 31 km for 0.5 TeV

5 RF pulses per second (O(1.6ms), O(200kW), 1312 bunches)

CLIC

12 GHz, 23cm long, normal conducting

Loaded gradient 100 MV/m (72 MV/m at 380 GeV) \Rightarrow Limited by sparking \Rightarrow 11 to 50 km long for 0.38 to 3 TeV

50 RF bursts per second 240ns, 60MW, 312 bunches

Achieved Gradients

ILC and CLIC demonstrated that design gradients can be reached

Work is on reproducibility, improvements and cost reduction

Industrial fabrication

- 800 ILC-type cavities for X-FEL
- Several CLIC structures

CLIC structures

CLIC structures fabrication/conditioning is being improved Preparing for industrialisation Interest of other projects (FELs, DESY, INFN, PSI, Cockcroft,...)

ILC goal 31.5 MV/m installed

X-FEL goal 24 MV/m reached 29 MV/m

Recent N infusion might increase gradient by up to 20%

Luminosity

Challenge to produce the beams and to collide them

Other Systems

Preservation of beam quality is challenging Collision beam sizes down to 1 nm for CLIC at 3 TeV Many systems have been developed and tested Now focus on preparing industrialisation/cost reduction

Stabilisation of magnets against natural ground motion

alignment algorithms

Novel beam-based

Novel high accuracy alignment

Novel high precision instrumentation

Novel beam optics to squeeze beams

And many more ...

Plasma Acceleration as Upgrade Option?

Very high gradients of 50 GV/m demonstrated

Can use laser or particle beam to generate field

R&D programmes are ongoing

Require excellent beam quality and high efficiency

- Preservation of beam quality during acceleration has to be studied in theory and experimentally
- This is particularly tough for high efficiency

Application of novel technologies to colliders

- Started a working group for CLIC to understand potential
- Plasma community started a working group on colliders

FCC and CEPC/SppC

Proposal for project at CERN

• CDR for EU strategy end 2018

FCC-hh

- pp collider with 100 TeV cms
- Ion option
- Defines infrastructure

FCC-ee

Potential e⁺e⁻ first stage

FCC-eh

additional option

HE-LHC

LHC with high field magnets

Proposal for project in China

CDRs exist but changes since

CEPC

- e⁺e⁻ collider 90-240 GeV
- focus on higgs

SppC

- Hadron collider to later be installed in the same tunne
- 75 to O(150) TeV

Focus on proton colliders:

Main challenge for proton colliders

Magnetic field strength and circumference

FCC-hh layout Two main experiments Two additional experiments

Optimised for Geneva site Circumference 97.75 km Can use LHC or SPS as injector

Integrated luminosity Goal 17.5 ab⁻¹ per main experiment

CEPC/SppC uses 100 km tunnel

	LHC (HL-LHC)	HE-LHC (tentative)	FCC Baseline	C-hh Ultimate	SppC	SppC ultimate
Cms energy [TeV]	14	27	100	100	75	150
Luminosity [10 ³⁴ cm ⁻² s ⁻¹]	1 (5)	25	5	< 30	10	?
Machine circumference	27	27	97.75	97.75	100	100
Arc dipole field [T]	8	16	16	16	12	24
Bunch distance [ns]	25	25 (5)	25	25 (5)	25 (10/5)	?
Background events/bx	27 (135)	800 (160)	170	< 1020 (< 202)	490 (196/98)	?
Bunch length [cm]	7.5	7.5	8	8	7.55	?

Future Accelerator Challenges, CERN July 2017

FCC-hh Magnet Development

FCC goal is 16 T operating field

- Requires to use Nb₃Sn technology
- At 11 T used for HL-LHC
- \Rightarrow Strong synergy with HL-LHC

R&D on cables in test stand at CERN

Target: $J_C > 2300 \text{ A/mm}^2$ at 1.9 K and

Key cost driver 16 T demonstrated in coil But need full magnet

CIEMAT, CEA, INFN

High-temperature superconductors (HTS) are also explored

Luminosity

High beam current is most important factor for luminosity

Other R&D

8 GJ kinetic energy per beam

- Airbus A380 at 720 km/h
- 2000 kg TNT
- 400 kg of chocolate
 - Run 25,000 km to spent calories
- O(20) times LHC

Many other components e.g. beamscreen

Up to 500 kW collision debris per experiment Mainly lost in triplets, challenge for lifetime and quench

Collimation, injection and extraction are challenging

e.g. beam dump

FCC-hh dilution pattern

LHC dilution pattern

HE-LHC

Goal is 4 x HL-LHC luminosity HL-LHC injectors FCC-hh magnets and vacuum system

Make FCC-hh magnets more compact to fit in LHC tunnel

- Challenge is field leakage into tunnel
- Use kryostat as partial return yoke
- Active compensation

Only magnetic elements shown

Cannot increase lengths of insertions

- Currently beta-function around 0.4 m
 - 0.7ab⁻¹ per year
 - Hope to improve
- Beam extraction is a challenge
- Collimation to be looked at

FCC-ee / CEPC Parameters

Parameters are still moving targets FCC-ee and CEPC

Short beam lifetime at high energy requires

High background photon flux from machine

High current low energy beam but also high voltage at high energies

> L. Wang et al. IHEP-AC-2017-01 F. Zimmermann et al. priv. comm.

Parameter	Z	W	н	t	LEP2
Cms E [GeV]	91.2	160	240	350	208
I [mA]	1390 / 370-1450	147 / 51	<mark>29</mark> / 11-30	6.4 /	4
L [10 ³⁴ cm ⁻² s ⁻¹]	<mark>200</mark> / 18-71	<mark>25</mark> / 4.1	7 / 2.1-5.4	1.3 /	0.012
Years op.	4	2	3	5	
Int L / IP [ab ⁻¹]	75	5	2.5	1.5	

Civil Engineering

FCC at Geneva

Typically 1/3 of the total cost

Can have severe constraints from site

E.g. had to change FCC layout to avoid bad rock under the Jura

CLIC stages at Geneva

Site for ILC in Japan exists

Detailed exploration for

CEPC/SppS site in China foreseen

CLIC Roadmap

2013 - 2019 Development Phase

Development of a Project Plan for a staged CLIC implementation in line with LHC results; technical developments with industry, performance studies for accelerator parts and systems, detector technology demonstrators

2020 - 2025 Preparation Phase

Finalisation of implementation parameters, preparation for industrial procurement, Drive Beam Facility and other system verifications, Technical Proposal of the experiment, site authorisation

2026 - 2034 Construction Phase

Construction of the first CLIC accelerator stage compatible with implementation of further stages; construction of the experiment; hardware commissioning

2019 - 2020 Decisions

Update of the European Strategy for Particle Physics; decision towards a next CERN project at the energy frontier (e.g. CLIC, FCC)

2025 Construction Start

Ready for construction; start of excavations

2035 First Beams

Getting ready for data taking by the time the LHC programme reaches completion

Preliminary FCC Draft Schedules

Technically limited schedule

Conclusion

Important progress toward the EU strategy

- ILC
 - Focus on cost reduction and political process
- CLIC
 - Further optimising 380 GeV first energy stage
 - Work on further stages, including novel technologies
 - Project Implementation Plan for 2018
- SppC and CEPC
 - CDRs available
- FCC
 - CDR end of 2018 for hh (with he) , ee and HE-LHC options
 - Including R&D plan

More in the Summer Student Lectures "Future Collider Technologies", July 27+28 <u>https://indico.cern.ch/event/634063</u>

Many thanks to L. Evans, S. Stapnes, W. Wuensch, Ph. Burrows, I. Syratchev, M. Benedikt, K. Oide, F. Zimmermann, M. Klein, ..., the ILC, CLIC, FCC and SppC/CEPC teams

Reserve

Linear Collider

Luminosity and Parameter Drivers

Can re-write normal luminosity formula

$$\mathcal{L} = H_D \frac{N^2}{4\pi\sigma_x \sigma_y} n_b f_r$$

0

Need to ensure that we can achieve each parameter

CERN

Beam-beam Effect

Particles travel on curved trajectories

They emit O(1) photons (beamstrahlung)

They can collide with less than nominal energy

Klystrons vs. Drive Beam

Klystrons vs. Drive Beam

148 μs x 4.2 A x 2.4 GV

24 x 101 A x 2.4 GV

 $2 \times 10 \text{ GW} \times 148 \mu \text{s} => 2 \times 5.8 \text{ TW} \times 240 \text{ ns} = 11.6 \text{ TW} \times 240 \text{ ns}$

Novel Power Generation Scheme

Demonstration in CTF3

Future Accelerator Challenges, CERN July 2017

Note: LHeC / FCC-he

Interaction region design ongoing

M. Klein et al

