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@)\ Linear Colliders @)

D% Ny
. klystrons - klystrons
Compact Linear Collider (CLIC) owg s | || damferences || oww e
drive beam accelerator m drive beam accelerator
* Stages at 380, 1500 and 3000 24GeV, 106Hz Cr2439m 24Gev, 1.0 Ghe

2.5km 2.5km
G eV delay loop » 4 delay loop
decelerator, 25 sectors of 878 m
LN Yy

International Linear Collider ILC chm B80S BDS Mfm)mm

° 500 GeV (—,{ e-main linac, 12 GHz, 72/100 MV/m, 21 km 275 km 275 km of main linac %
¢ 250 GeV belng dlsgussed = Sk \/

.86 1o 0 GeV Main Beam

BCTP
e;it-;g%ct\? r e; iggzct\?r
C.M. Energy 500 GeV 380 GeV 3000 GeV

Peak luminosity 1.8 x103*cm=s? 1.5x103%*cm?2s? 6 x103*cm=s?

IP beam size 474 nm/6nm 150 nm /3 nm 40nm /1 nm
Beam power 10.5 MW 5.6 MW 28 MW
E gradient 31.5 MV/m 72 MV/m 72/100 MV/m
Length 31 km 11 km 50 km
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@) Lepton Colliders: Ring vs. Linear Collider @)

accelerating cavities

Can accelerate beam in many turns

Can use beam many times

For light particles synchrotron radiation can
be large

At LEP2 lost 2.75GeV/turn for E=105GeV

Almost no radiation in a linac, but

Cost [arb.u.]

Have to achieve energy in single pass
Have to achieve luminosity with single pass
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ILC

Acceleration
CLIC

1.3 GHz, 1m-long, superconducting

Q,=0(10%)

Effective gradient 31.5 MV/m

= Limited by degradation of Q,

— 31 km for 0.5 TeV

5 RF pulses per second

12 GHz, 23cm long, normal conducting

Loaded gradient 100 MV/m

(72 MV/m at 380 GeV)

= Limited by sparking

— 11 to 50 km long for 0.38 to 3 TeV

(O(1.6ms), O(200kW), 1312 bunches)

D. Schulte

50 RF bursts per second
240ns, 60MW, 312 bunches
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@)\ Achieved Gradients @)

CLIC structures

ILC and CLIC demonstrated that design | SRR, | ez 7
gradients can be reached | Tetwhieiex N B
c | e RS L=
Work is on reproducibility, improvements 3 i A v \
and cost reduction : | |
Industrial fabrication B = L
« 800 ILC-type cavities for X-FEL > PA MY A
* Several CLIC structures 40 G[MV/m] 80 100 120
N. Walker, D. Reschke, SRF'15
—— ~ _ CLICstructures fabrication/conditioning is being improved
TRy e _ ~ Preparing for industrialisation
A % Interest of other projects (FELs, DESY, INFN, PSI,
:,\;\ﬂl «  Cockcroft,...)
oI !
2 [ _ILCgoal 31.5 MV/m installed
il
“| | G-max % X-FEL goal 24 MV/m
p— bI‘ il \[L .. reached 29 MV/m
— | G-usable |
‘.—-—1_:}*L;'_I|c||||n : lll IQ’.:,,
G [MV/m] 20 30 40 * RecentN infusion might increase gradient by up to 20%
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ED(HD

Luminosity @)

NT

|
-k

|
o, o,

Beam power

Luminosity Beam Quality
(+bunch length)

spectrum
Limited by quality of physics Need very small beams
(Luminosity spectrum, . des Small phase space (emittance)
beamstrahlung) Par'F o. str_ucture esign Squeeze it down
optimisation
Challenge to produce the beams
and to collide them
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Y

Other Systems

Preservation of beam quality is challenging

Collision beam sizes down to 1 nm for CLIC at 3 TeV
Many systems have been developed and tested

Now focus on preparing industrialisation/cost reduction

Stabilisation of magnets against
natural ground motion

D. Schulte

offset

Y

Novel beam-based
alignment algorithms

Time: 0.00s

BI10, no PRE :B10, PRE B10, PRI
IPFB, OFB IPFB, OFB. IPFB, OFB
.noSTAB  ‘curr. STAB future STAB

x offset
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Novel high accuracy
alignment

Novel high precision
instrumentation

Novel beam optics
to squeeze beams

And many more ...



@)\ Plasma Acceleration as Upgrade Option? @)

Focusing (E))

Very high gradients of 50 GV/m Defocusing Acoeleciting ./ Decelerating (E.)
demonstrated \ AWeIHaRils / / '
T U g b= = =
Can use laser or particle beam i . - *f‘ +;/+.-f"+ iR
to generate field l A  Puihd I Wi ot +‘ Drive | s
R e ++¢++_-++++-— |
e IR ] RN A e I A A electron

R&D programmes are ongoing = --_zE- - beam
Accelerated Witness Bunch

Require excellent beam quality and high efficiency
* Preservation of beam quality during acceleration has to be studied in theory and experimentally
* Thisis particularly tough for high efficiency

Application of novel technologies to colliders
e Started a working group for CLIC to understand potential
 Plasma community started a working group on colliders
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&) FCC and CEPC/SppC &)

Y NS

Pr0p058| fOI’ prOJeCt at CERN JohnOsborne(éERN),_CaroImeWaaiJer(CERN) X ‘ | I— Proposal for prOJeCt In Chlna
 CDR for EU strategy end 2018 PV o * CDRs exist but changes since

FCC-hh

* pp collider with 100 TeV cms
* |lon option

* Defines infrastructure

CEPC
 et*e collider 90-240 GeV
* focus on higgs

. - SppC
FCC-ee . o * Hadron collider to later be
e Potential e*e first stage installed in the same tunne

* 751to O(150) TeV
FCC-eh
e additional option

Focus on proton colliders:
HE-LHC

* LHCwith high field magnets Main challenge for proton colliders

Magnetic field strength and circumference
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- msm L DS
&) FCC-hh . =
E mmm | arc
FCC-hh layout Xp
. . Inj. + Exp InJ + Exp.
Two main experiments
Two additional experiments
1 4 km

Optimised for Geneva site
| Bcol  «— 5gkm — extraction}

Circumference 97.75 km
Can use LHC or SPS as injector
1 4 km
Integrated luminosity
Goal 17.5 ab™! per main experiment o-col

CEPC/SppC uses 100 km tunnel

Cms energy [TeV] 14 27 100 100 75 150
Luminosity [103*cm2s1] 1(5) 25 5 <30 10 ?
Machine circumference 27 27 97.75 97.75 100 100
Arc dipole field [T] 8 16 16 16 12 24
Bunch distance [ns] 25 25 (5) 25 25 (5) 25 (10/5) ?
Background events/bx 27 (135) 800 (160) 170 <1020 490 ?
(<202) (196/98)
Bunch length [cm] 7.5 7.5 8 8 7.55 ?
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@) FCC-hh Magnet Development &)

AW

FCC goal is 16 T operating field Key cost driver
* Requires to use Nb,Sn technology 16 T demonstrated in coil
e At 11T used for HL-LHC But need full magnet
= Strong synergy with HL-LHC
: Magnet design to minimise material use
R&D on cables in test stand at CERN o
e and limit margins to essential level Ll ST E16 81

Cos-theta Blocks Canted Coil

Ky /
Target: J.> 2300 A/mm? at 1.9 K and

Fur:CirCol Swiss contribution

& key 1o Mew Physics Via PSl

2500
\, \¢
N

T
§ 2000 \fé i CIEMAT, CEA, INFN
NS A
21500 = -
\ X
g 1000 \ High-temperature
= o \ superconductors (HTS)
? \ are also explored

O T T T T 1

0 5 10 15 20 25
Field (T)
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N
L=¢ Ag il

Beam-beam tuneshift
mostly limited by
beam physics

Luminosity

r—
—

\

wn

-2

=

Lumi[c

Beta-function limited

by lattice design (and
magnet technology)

2.0(
1.5}
1.0l
0.5

0.0

1035‘

- 8fbl/day

- Turn-around time

Ultimate ekample, 25ns,
~-no luminosity levelling -1

—

Stored beam important

for luminosity

High beam current is most important factor for luminosity
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@)\ Other R&D @)

Y NS
8 GJ kinetic energy per beam Up to 500 kW collision debris per experiment
«  Airbus A380 at 720 km/h Mainly lost in triplets, challenge for lifetime and quench
. 2000 kg TNT ) : -
e 400 kg of chocolate 3
— Run 25,000 km to spent calories Eg .
. 0(20) times LHC = |
Many other components 7 a0 a0 ;;;‘i’;mcz;;‘;om ;;’I;’ficmlg"'m 10000
e.g. beamscreen
296 Collimation, injection and extraction are challenging

> % NNy
/////V’l

B

e.g. beam dump

FCC-hh dilution pattern
{ hl

LHC dilution pattern

N

2
73
&
SN

N 4
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<) &)
Goal is 4 x HL-LHC luminosity luminosity [103* cm2s]
HL-LHC injectors B 7
FCC-hh magnets and vacuum system 25

F. Zimmermann et al.

T T T T T T

B*=25 cm

20
Make FCC-hh magnets more compact to fit
in LHC tunnel Rds
e Challenge is field leakage into tunnel

10:—
* Use kryostat as partial return yoke i

* Active compensation °r .

|Btot] (T) O)'_I|‘|v|||||\....|...,|....t
e 5 10 15 20 )

-4.791 1day

-4.539

-4.287

-4.034

-3.782

Cannot increase lengths of insertions

e Currently beta-function around 0.4 m
* 0.7ab! per year
* Hope to improve

* Beam extraction is a challenge

e Collimation to be looked at

ROXIE 102

Only magnetic elements shown
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FCC-ee / CEPC Parameters &)

ILC ——
ILC, high lumi -5
CLIC - Koo

7

1000
—_ In)
— H
o P
E l 3
go 105' EII
= R X
o R
= 1 3 f
—l :

0.1 '

O 500 1000 1500 2000 2500 3000

Parameters are still moving targets FCC-ee and CEPC

Ecms [GeV]

7

Challenges:
Short beam lifetime at high energy requires
top-up scheme

High background photon flux from machine

High current low energy beam but also high
voltage at high energies

Make it cheap

L. Wang et al. IHEP-AC-2017-01
F. Zimmermann et al. priv. comm.

“-_-- LEP2

Cms E [GeV]
| [mA]

L [1034 cm2s]
Years op.
Int L/ IP [ab™]

D. Schulte

91.2
1390 / 370-1450 147 / 51
200/ 18-71 25/4.1
4 2
75 5

29 / 11-30 6.4 / - 4
7/2.1-5.4 1.3/ - 0.012
3 5
2.5 1.5
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@)\ Civil Engineering @)

FCC at Geneva

Alignment Location

Typically 1/3 of the total cost
Can have severe constraints from site

E.g. had to change FCC layout to avoid bad
rock under the Jura

CLIC stages at Geneva

ok

i Legend

emmm CERN existing LHC
Potential underground siting :

ssee CLIC 380 Gev
» ssee CLIC 1.5 TeV
ssse CLIC 3 TeV

Site for ILC in Japan exists
* Detailed exploration for

Jura Mountains

CEPC/SppS site in China foreseen
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@)\ CLIC Roadmap

2013 - 2019 Development Phase 2020 - 2025 Preparation Phase
Development of a Project Plan for a Finalisation of implementation
staged CLIC implementation in line with parameters, preparation for industrial
LHC results; technical developments with procurement, Drive Beam Facility and
industry, performance studies for other system verifications, Technical
accelerator parts and systems, detector Proposal of the experiment, site
technology demonstrators authorisation

2019 - 2020 Decisions 2025 Construction Start 2035 First Beams

Update of the European Strategy for Ready for construction; Getting ready for data taking by
Particle Physics; decision towards a next start of excavations the time the LHC programme
CERN project at the energy frontier reaches completion

(e.g. CLIC, FCQC)

qb Compact Linear Collider
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Preliminary FCC Draft Schedules

Technically limited schedule

20 22

24 26

28 30 32 34 40

42

SC Magnets

Dipole short models

i i i I i i i i i i .
L3 Technical Design Phase b Strategy Update 2026 - assumed project decision M. Benedikt
[ —

Dipole long models

16 T dipole in

dipoles preseries

16 T series production

FCC-hh

Civil Engineering FCC-hh ring ‘

CE TL to LHC LHC Modification

Installation + test FCC-hh

FCC-ee

| CE FCC-ee ring + injector

HE-LHC

D. Schulte
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Conclusion @)

NS

Important progress toward the EU strategy Many thanks to L. Evans,
e |LC S. Stapnes, W. Wuensch,
Ph. Burrows, I. Syratchey,
— Focus on cost reduction and political process M. Benedikt, K. Oide, F.
e CLIC Zimmermann, M. Klein,
..., the ILC, CLIC, FCC and
— Further optimising 380 GeV first energy stage SppC/CEPC teams

— Work on further stages, including novel technologies
— Project Implementation Plan for 2018
 SppCand CEPC
— CDRs available
e FCC
— CDR end of 2018 for hh (with he), ee and HE-LHC options
— Including R&D plan

More in the Summer Student Lectures “Future Collider Technologies”, July 27+28
https://indico.cern.ch/event/634063



https://indico.cern.ch/event/634063
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Reserve
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Linear Collider
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7

Can re-write normal N2
luminosity formula ,C — HD ﬂ,bf?,

-

[}
e

1
L x Hp Nnyf, —

T 4 \ D..ff
I Beam power I
Luminosity Beam Quality
spectrum (+bunch length)

Need to ensure that we can achieve each parameter
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1
L:DCE?E)‘EE”ﬂJﬂhf} —
Ty

Intense beams for luminosity

-

Strong electromagnetic fields

-

Particles travel on curved
trajectories

-

They emit O(1) photons
(beamstrahlung)

!

They can collide with less
than nominal energy

D. Schulte

Beam-beam Effect &)

n, X k., x Op >0
i - o, + 0y, . Y

L oxX —— Oy + 0y = Oy
00y

9e+32
8e+32
7e+32
6e+32
5e+32
4e432 |
3e+32 |
2e+32
1e+32 |
0 . . . . . .
2900 2920 2940 2960 2980 3000 3020 3040
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ILC
Peak power 11 MW
Easy with klystrons

-5.12dB
HYBRIDS

WR650

Klystrons vs. Drive Beam

LLRF
KLYSTRON MODULATOR
(10 MW, 1.6 ms) (120kV, 130 A)

. IT“*—ATTENUATORS

H

| TUNNEL

| PENETRATION
H

TAP-OFFS OF VARIOUS

\? q = COUPLINGS
LOADS \‘\_\\__, i

me%ﬁﬁﬁ

q 9 CAVITIES H 4 CAVITIES QUAD 4 CAVITIES H 9 CAVITIES H
: 3 CRYOMODULES é
.4\ 37.956 m "‘J
540 klystrons .
20MW, 148ps | | | Drive Beam '
drive beam accelerator

A

2.5km

BC2

A

D. Schulte

e~ main linac, 12 GHz, 72/100 MV/m, 21 km

2.75 km
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clrcumnferences
delay loop 73 m
CR1 293 m
CR2439m

BDS BDS
275 km

CLIC
Peak power 8.5 TW
Novel scheme required

540 klystrons
| | | 20Mw148ps

drive beam accelerator

¥

A

2.5km

< | delay loop

decelerator, 25 sectors of 878 m

o

24

7\

e* main linac
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@)\ Klystrons vs. Drive Beam @)

Drive beam time structure - initial Drive beam time structure - final
240 ns 240 ns
LLLLE L P e e T - (—5.8}15 >
140 ps train length - 24 x 24 sub-pulses e ALARAARAE ...
4.2 A-24GeV - 60 cm between bunches 24 pulses - 101 A - 2.5 cm between bunches
148 usx4.2 Ax 2.4 GV 24 x 101 Ax 2.4 GV

2x10 GW x 148 ps => 2x5.8TWx240ns=11.6 TW x 240 ns

540 klystrons X 540 klystrons
20MW,148ps | || Drive Beam ' circumferences | | | 20MwW,148ps
delay loop 73 m
drive beam accelerator CR1203m drive beam accelerator
2.4 GeV, 1.0 GHz CR2 439 m 2.4 GeV, 1.0 GHz

A
Y

A

2.5km 2.5 km
< | delay loop
' decelerator, 25 sectors of 878 m
q—
BC2
BDS BDS

275 km 275 km s
TA e- main linac, 12 GHz,r 72/100 MV/m, 21 km e* main linac TA
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&) Novel Power Generation Scheme @)

Y

—
100A drive beam

Straight references

1- e

Jﬁ'fir,- -

2

A s

m

i - gl 3 dB E-plane
N /? !i HYBRID

190A drive L

gam Y )

a

DO

1

2
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Demonstration in CTF3 @)

The drive beam concept has been
"8 demonstrated in CTF3
.'\, ¥ e.g. 150 MV/m acceleration

‘fﬁ?{},‘l}:“,é.)n 3 " \ | ~ Nextstep is to build real drive
o Y g beam facility

PN

v e N
p«‘ COMBINER
' NIN€

DRIVE BEAM
LINAC

Two Beam
Module
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@)\ Note: LHeC / FCC-he @)

Loss compensation 2 (90m) Loss compensation 1 (140m)

Linac 1 (1008m) —
Injector

LHeC HE- FCC
CDR LHeC LHeC

Matching/splitter (31m) E [TeV] 12.5
Matching/combiner (31m)
E. [GeV] 60 60 60 60
Arc 1,3,5 (3142m) Arc 2,4,6 (3142m)
L 1 8 12 15

Bypass (230m) [10°3 cm2s71]

\

Linac 2 (1008m)

_ _ VAN Development of accelerator technology
Matching/combiner (31m) IPline  Detector E.g. RF power required to control cavities
Matching/splitter (30m) Test facility (PERLE) planned in Orsay

Interaction region

20011o¥ e ,L!NACT 2 :
design ongoing

o hur

150 MeV/pass
ARCEY ARCY | ARC2

150 Me\f/p'ass

e
REEG LINAC 1

M. Klein et al
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