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With	many	thanks	to	my	CLIC	and	CLICdp	colleagues	for	presenta9on	material	

e+e-	è	C	@	380	GeV		-	



CLIC	in	a	nutshell	
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•  e+e- collisions @ √s  350 GeV - 3 TeV 
•  Luminosity: a few 1034 cm-2s-1 

•  2-beam acceleration scheme 
•  At room temperature 
•  Accelerating gradient 100 MV/m 
•  CDR published in 2012 

Parameter	 380	GeV	 1.5	TeV	 3	TeV	
Luminosity	L	(1034cm-2sec-1)	 1.5	 3.7	 5.9	

L	above	99%	of	√s	(1034cm-2sec-1)	 0.9	 1.4	 2.0	

Bunch	separa;on	(ns)	 0.5	 0.5	 0.5	

Number	of	bunches	per	train	 352	 312	 312	

Repe;;on	frequency	(Hz)	 50	 50	 50	

Beam	size	at	IP	σx/σy/σz	(nm/nm/μm)	 150	/	2.9	/	70	 ~60	/	1.5	/	44	 ~40	/	1	/	44	

Accelerator	gradient	(MV/m)	 72	 72/100	 72/100	

Site	length	(km)	 11	 29	 50	

Es;mated	power	cons.	Pwall	(MW)	 252	 364	 589	

“bunch	train”	

very	small	bunch	size	

L increases with √s	

key	development	focus	

beamstrahlung	effect	



CLIC	test	facility	CTF3	
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CTF3	successfully	demonstrated:	
ü  drive	beam	genera;on		
ü  RF	power	extrac;on	
ü  two-beam	accelera;on	up	to	a	

gradient	of	145	MeV/m		
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•  Interes;ng	pp	events	need	to	be	found	
within	a	huge	number	of	collisions	

Lucie	Linssen,	CERN,	July	17,		2017	

pp	collisions	/	e+e-	collisions	

•  e+e-	events	are	more	“clean”	
collision	energy	

e+e-	processes	

pp	cross	secDon	

factor	>	108	

collision	energy	

pp	and	e+e-	collisions		
provide	complementary	physics	
informa;on	=>	important	for	
our	field	to	have	both	!	



CLIC	staging	scenario	

Lucie	Linssen,	CERN,	July	17,		2017	 5	

•  380	GeV	(350	GeV),	600	m-1	:	 	precision	Higgs	and	top	physics	
•  1.5	TeV,	1.5	ab-1	: 	 	 	 	BSM	searches,	precision	Higgs,	CH,	HH,	top	physics		
•  3	TeV,	3	ab-1	: 	 	 	 	BSM	searches,	precision	Higgs,	HH,	top	physics		

CLIC	is	extendable!	May	profit	from	even	more	advanced	technologies	for	high-E	stages	

Dedicated	to	top	mass	threshold	scan	

380	GeV	 1.5	TeV	 3	TeV	

Integrated	luminosity	including	commissioning	
with	beam	and	stops	for	energy	upgrades	

The	CLIC	program	builds	on	energy	stages:		
Maximizes	physics	output,		enables	realis+c	funding	profiles,		delivers	key	physics	early	



the	CLIC	physics	program	
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•  Higgs	boson	
•  Top	quark	
•  BSM	(direct	and	indirect)	

•  Physics	benchmark	studies	use	the	two	CLIC	CDR	detector	models	
•  Geant4-based	detector	simula;on	and	event	reconstruc;on	
•  Include	effects	of	beam-induced	backgrounds	and	luminosity	spectrum	

stage	 √s	 Lint	(V-1)	

1	 350	GeV	 500	

2	 1.4	TeV	 1500	

3	 3	TeV	 2000	

Scenario	used	for	benchmarks	

Note:	the	staging	scenario	used	for	
most	benchmark	studies	was	a	bit	
different	from	the	new	CLIC	baseline	

Meanwhile:		
new	opDmised	CLICdet	
(not	yet	used	for	
physics	benchmarks)	



Higgs	physics	at	CLIC	
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Dominant	processes:	

Higgsstrahlung	
σ	~	1/s	
Higgs	id.	from	Z	recoil	

WW(ZZ)	-	fusion	
σ	~	log(s)	
Large	stat.	at	high	E	

For	unpolarised	beams.	
Hνν	increases	×1.8	for	
-80%	e-	polarisa;on	
(CLIC	baseline)	

high	selecDon	
efficiencies	!	



Z	=>	μμ	recoil	
350	GeV	
500	m-1	

Higgsstrahlung	e+e-	à	ZH		@	~350	GeV	
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Δ(gHZZ)	=	±0.8%	

ZH	à	Hqq:		beCer	precision	at	√s	350	GeV	than	at	250	GeV	or	420	GeV	
(trade-off	between	detector	resolu;on	and	physics	background,	see	next	slide)	

-	

Z	=>	μμ 	BR~3.5% 				very	clean 	 		
Z	=>	ee 	BR~3.5% 				very	clean	
Z	=>	qq 	BR~70% 				almost	model	independent 	 	 		

Δ(σHZ)	=	±3.8%	

Δ(σHZ)	=	±1.8%	-	

ZH	=>	Hqq				access	to	invisible	Higgs	decay		BR(H=>inv)	<	1%	@	90%	CL	-	

ZH	events,	selected	through	recoil	mass	against	Z	
	mrec	≈	s	+	mZ	–	2	√s(E1+E2)	

model-independent	measurement	
ΔσHZ	~	gHZZ	

2	2	

2	
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Higgsstrahlung	e+e-	à	ZH		@	250,	350,	420	GeV	
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signal	

background	

√s	=	250	GeV	 √s	=	350	GeV	 √s	=	420	GeV	

mrec	
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Together	with	top	
physics	this	drives	
the	choice	of	CLIC	
lower	energy	stage	
@	380	GeV	



simultaneous	extrac;on	H	=>	bb,cc,gg	@	350	GeV	
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bb	likelihood	versus	cc	likelihood	for	different	event	classes	-	-	

H	è	gg	H	è	bb	-	 H	è	cc	-	

Simultaneous	extracDon	of	2	producDon	and	3	decay	modes	
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Δ(σ✕BR)SM/(σ✕BR)SM	at	350	GeV,	500	V-1	



Higgs	physics	above	1	TeV	
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bH	producDon:	
• Extrac;on	of	Yukawa	coupling	yt	
• Best	at	√s	above	700	GeV	

Studied	at	1.4	TeV,	1.5	ab-1	
Sta;s;cal	accuracy:	
• Δ(gHb)	=	±4.2%	at	1.4	TeV	

-	

Vector	boson	fusion:	
e+e-	è	Hνν,	e+e-	è	He+e-		
High	σ	+	increased	luminosity	
Gives	access	to	rare	Higgs	decays	
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same	event	before	cuts	on	
beam-induced	background	

e+e-	è	CH	è	WbWbH	è	qqb	τνb	bb	-	-	-	 -	 -	

CLIC	1.4	TeV	

Highly	granular	calorimetry	+	precise	hit	;ming	
ê	

Very	effec;ve	in	suppressing	backgrounds	
for	fully	reconstructed	par;cles	
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double	Higgs	produc;on	
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• Cross	sec;on	sensi;ve	to	gHHH	and	gWWHH	
• Small	cross	sec;on	(225/1200	evts	@	1.4/3	TeV)	
• Large	backgrounds	
⇒ Requires	high	energy	and	high	luminosity	

	

S/B	~	10−5	

HHννèbbbbνν	×50000	

CLIC	3	TeV	

Most	promising	final	states:	bbbbvv	and	bbWW*vv	

Recent	re-analysis	including	key	addiDonal	background	processes:	
Assuming	-80%	e-	polarisa;on,	2	ab-1:	
•  at	1.4	TeV 	ΔgHHH/gHHH				±40%	
•  at	3	TeV 	ΔgHHH/gHHH				±22%	
•  =>	combined: 	ΔgHHH/gHHH				±19%	
	
	
	
	
Ongoing:	simultaneous	extrac;on	ΔgHHH	and	ΔgWWHH	
Using	kinema;c	variables	=>	improved	result	
	

Expected	combined	ΔgHHH/gHHH				≈	±12%	for	3	ab-1	

work	in	progress	

arXiv:1608.07538	



combined	CLIC	Higgs	results	
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LHC-like	fit,	assuming	SM	decays	only.	
Fit	to	devia;ons	from	SM	BR’s	

Full	CLIC	program,	~5	yrs	of	running	at	each	stage	(plots	assume	80%	e-	polarisa;on	above	1	TeV):	
•  Model-independent:	down	to	±1%	for	most	couplings	
•  Model-dependent:	±1%	down	to	±	few	‰	for	most	couplings	
•  Accuracy	on	Higgs	width:	±3.5%	(MI),	±0.3%	(MD,	derived)	

Higgs	width	is	a	free	parameter,		
allows	for	addi;onal	non-SM	decays	

Lucie	Linssen,	CERN,	July	17,		2017	

Model-independent	 Model-dependent	
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combined	CLIC	Higgs	results	
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Model-independent	 Model-dependent	

LHC-like	fit,	assuming	SM	decays	only.	
Fit	to	devia;ons	from	SM	BR’s	

											Accuracy	significantly	beCer	than	HL-LHC	
											Accuracy	comparable	to	HL-LHC	

indica;ve	comparison	with	HL-LHC	capabili;es	

e+e-	colliders	can	perform	
model-independent	measurements	

ar
Xi
v:
16
08
.0
75
38

	



top	quark	physics	
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MoDvaDon:	
So	far	top	quark	only	measured	at	hadron	colliders	
Precision	top	physics	in	e+e-:	

•  sensi;ve	to	many	BSM	scenarios		
•  understanding	EWSB	
•  test	ground	of	QCD	

Top	physics	programme	currently	studied	for	CLIC:	
•  Top	quark	mass	

•  C	threshold	scan	at	350	GeV;		
•  reconstructed	mass	above	threshold	

•  Electroweak	couplings	to	the	top	quark	
•  At	380	GeV,	and	above	1	TeV	(boosted	top)		

•  Yukawa	coupling	through	CH	produc;on	
•  Measurement	of	Vtb	in	single	top	produc;on		
•  Rare	decays	(strongly	suppressed	in	SM)	
•  Searches	using	boosted	top	quarks,	e.g.	stop	

-	

-	



threshold	scan	of	top	pair	produc;on	
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Eur.Phys.J.	C73	(2013)	2530	

•  Measurement	at	10	different	√s,	10	m-1	each		
•  Expected	precision	on	1S	mass:	≈50	MeV	

(dominated	by	theory	NNNLO	scale	uncertainty)	
•  Theore;cal	uncertainty	≈10	MeV	when	

transforming	1S	mass	to	MS	scheme	

•  Top	pair	producDon	cross	secDon	around	
the	b	threshold	

•  Resonant-like	structure,	very	sensi;ve	to	
mtop,	and	αs	

-	



top	quark	couplings	to	Z	and	γ	
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γ	and	Z	form	factors	can	be	disentangled		
using	beam	polarisa9on	by	measuring:	
•  Produc;on	cross	sec;on	
•  Forward-backward	asymmetry	
•  Helicity	angle	distribu;on	(in	leptonic	decays)	

e+e-	è	C	è	6	jets	@	380	GeV	-	

Top	quark	pairs	are	produced	via	Z/γ	
	
New	physics	would	modify	the	CZ/Cγ	vertex	-	 -	



top	quark	couplings	to	Z	and	γ	
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Expected	coupling	precision	at	LHC,	ILC	(500	GeV)	and	CLIC	(380	GeV,	3	TeV)	

e+e-	measures	top	couplings	more	than	an	order	of	magnitude	beber	than	HL-LHC	
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electroweak	couplings	to	top	at	high	√s		
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Durieux,	Perello,	Vos,		
Zhang	to	be	published	

Studied	at	generator	level	in	a	dimension-6	operator	approach	(instead	of	Form	Factor	approach)	

Four-fermion	
operators:	
Sensi;vity	rises		
steeply	with	E	
→	best	measured		
at	very	high	energy	

Vertex	operators:	
Sensi;vity	flat	in	E	
→	best	measured		
at	380	GeV	stage		
(most	C	events)	

=>	Full	detector	simula9on	studies	of	S	produc9on	at	1.4	TeV,	3	TeV	are	ongoing	-	



indirect	measurement:	study	of	e+e-	è	γγ	
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Precision	QED	
					from	cross	sec;on	and	angular	γγ	spectrum		
⇒ can	test	extension	of	QED		

CLICdp,	3	TeV,	2	ab-1	

Fit	result:	Λ	>	6.33	TeV	
(or	electron	size	<	3.1	×	10-18	cm)	

I.	Boyko	@	CLIC'16	

Accuracy	depends	
weakly	on	error	ΔL	
on	luminosity	

CLIC		3	TeV		2	ab-1	

Λ	±4TeV	



vector	boson	scaCering	
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Vector	boson	scabering	
•  sensi;ve	to	anomalous	gauge	couplings	
•  important	test	of	electroweak	symmetry	breaking		

see	also	arXiv:1607.03030	

Effec;ve	field	theory	approach,	parameters	α4,	α5	

SensiDvity	improves	strongly	with	√s	
CLIC	result	expected	significantly	beber	than	HL-LHC		
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direct	BSM	sensi;vity	

“model	I”,	3	TeV:	
•  Squarks	
•  Heavy	Higgs	

“model	II”,	3	TeV:	
•  Smuons,	selectrons	
•  Gauginos	

“model	III”,	1.4	TeV:	
•  Smuons,	selectrons	
•  Staus,	Gauginos	

Wider	capability	than	only	SUSY:	reconstructed	par;cles	can	be	
interpreted	as	“states	of	given	mass,	spin	and	quantum	numbers”	

In	general,	O(1%)	precision	on	masses	
and	produc;on	cross	sec;ons	found	

using	SUSY	as	a	benchmarking	tool	

è	
CERN-2012-003	 CERN-2012-007	



results	of	SUSY	benchmarks	
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Large	part	of	the	SUSY	spectrum	measured	at	<1%	level	
CERN-2012-007	



heavy	electroweak	states	(1)	
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heavy	electroweak	states	(2)	
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The	strategy	slide	
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CLIC	collabora;ons	
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CLIC	detector	and	physics	(CLICdp)	
29	insDtutes	from	18	countries	

	
hbp://clicdp.web.cern.ch/	

Focus	of	CLIC-specific	studies	on:	
•  Physics	prospects	and	simula;on	studies	
•  Detector	op;misa;on	+	R&D	for	CLIC	

CLIC/CTF3	accelerator	collaboraDon		
~60	insDtutes	from	28	countries	

	
hbp://clic-study.web.cern.ch/	

CLIC	accelerator	studies:	
•  CLIC	accelerator	design	and	development	
•  Construc;on	and	opera;on	of	CTF3	
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CLIC	offers	a	wealth	of	accurate	e+e-	physics	measurements	
“Affordable”	first	stage	at	380	GeV	with	guaranteed	physics	
Upgradable	up	to	3	TeV				
	

A	powerful	tool	to	address	the	open	quesDons	in	parDcle	physics	
	

CLIC	is	one	of	the	opDons	for	CERN	ayer	the	LHC,	next	to	HE-LHC/FCC-hh/FCC-ee	
•  Many	years	of	R&D	have	been	invested	in	CLIC	
•  Large-scale	tests	have	confirmed	the	technology	
•  It	is	well	understood	and	technically	mature,	no	show-stopper	iden;fied	
•  CLIC	can	gear	up	towards	construc;on	within	a	few	years		

summary	
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e+e-	è	Hνν	è	bbνν	-	 -	-	

CLIC		1.4	TeV	

same	event	before	cuts	on	
beam-induced	background	

thank	you	!	
Lucie	Linssen,	CERN,	July	17,		2017	
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CLIC	accelerator	parameters	
Parameter	 380	GeV	 1.5	TeV	 3	TeV	
Luminosity	L	(1034cm-2sec-1)	 1.5	 3.7	 5.9	

L	above	99%	of	√s	(1034cm-2sec-1)	 0.9	 1.4	 2.0	

Accelerator	gradient	(MV/m)	 72	 72/100	 72/100	

Site	length	(km)	 11.4	 29	 50	

Repe;;on	frequency	(Hz)	 50	 50	 50	

Bunch	separa;on	(ns)	 0.5	 0.5	 0.5	

Number	of	bunches	per	train	 352	 312	 312	

Beam	size	at	IP	σx/σy	(nm)	 150/2.9	 ~60/1.5	 ~40/1	

Beam	size	at	IP	σz	(μm)	 70	 44	 44	

Es;mated	power	consump;on*	(MW)	 252	 364	 589	

*scaled	from	CDR,	with	room	for	improvement	

Drives	;ming	
requirements	
for	CLIC	detector		

Very	small	beam		

Lucie	Linssen,	CERN,	July	17,		2017	 32	



CLIC	accelerator	environment	

33	

Beam-beam	background	at	IP:	
§ 	Small	beams	=>	very	high	E-fields	

s 	Beamstrahlung	
	

s 	Pair-background	
s High	occupancies	

	

s 	γγ	to	hadrons	
s Energy	deposits	

�/�� q

q�/��

Lucie	Linssen,	CERN,	July	17,		2017	

detector	

3	TeV	

Simplified	picture:	
Design	issue	(small	cell	sizes)	

	
Impacts	on	the	physics	
Needs	suppression	in	data		

detector	



luminosity	spectrum	
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FracDon	√s/√snom	 380	GeV	 3	TeV	

>0.99	 63%	 36%	

>0.9	 91%	 57%	

>0.8	 98%	 68%	

>0.7	 99.5%	 77%	

>0.5	 ~100%	 88%	

Beamstrahlung	è	important	energy	losses	
right	at	the	interac;on	point	
	

Most	physics	processes	are	studied	well	above	
produc;on	threshold	=>	profit	from	full	spectrum	
	
Luminosity	spectrum	can	be	measured	in	situ		
using	large-angle	Bhabha	scaCering	events,	
to	5%	accuracy	at	3	TeV	
Eur.Phys.J.	C74	(2014)	no.4,	2833	



beam-induced	background	rejec;on	(1)	
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Beam-induced	background	from	γγ	è	hadrons	can	be	efficiently	suppressed	by	applying	
pt	cuts	and	Dming	cuts	on	individually	reconstructed	parDcles	(par;cle	flow	objects)	

e+e� ! H+H� ! tbbt! 8 jets

1.2	TeV	 100	GeV	

1.2	TeV	background	in	reconstruc;on	
window	(>=10	ns)	around	main	physics	event	

100	GeV	background	
a�er	;ght	cuts	



beam-induced	background	rejec;on	(2)	
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Beam-induced	background	from	γγ	è	hadrons	is	further	reduced	by	
applying	adapted	jet	reconstrucDon	algorithms	

Example:	squark	study	at	√s	=	3	TeV	(with	assumed	squark	mass	of	1.1	TeV)	

No	γγ	è	hadrons		background	 With	γγ	è	hadrons	bkg	from	
60	bunch	crossings	

With	γγ	è	hadrons	bkg	from	
60	bunch	crossings	+	use	of	pt	
and	9ming	cuts	

TradiDonal	Durham-ee	jet	algorithm	inadequate	<=>	use	of	“LHC-like”	jet	algorithms	effecDve		
From	Eur.Phys.J.	C75	(2015)	no.8,	379,	see	also	arXiv:1607.05039	



luminosity	performance	e+e-	colliders	
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Linear	colliders:	
•  Can	reach	much	higher	energies	
•  Luminosity	rises	with	energy	
•  Beam	polarisa;on	at	all	energies	
	
Circular	colliders:	
•  Huge	luminosity	at	lower	energies	
•  Luminosity	decreases	with	energy	

Note:	Peak	luminosity	at	LEP2	(209	GeV)	was	~1032	cm-2s-1	



pp	collisions	/	e+e-	collisions	

electron 
positron	
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p-p	collisions	 e+e-	collisions	
Proton	is	compound	object	
à  Ini;al	state	unknown		
à  Limits	achievable	precision	

e+/e-	are	point-like	
à  Ini;al	state	well	defined	(√s	/	opt:	polarisa;on)	
à  High-precision	measurements	

High	rates	of	QCD	backgrounds	
à  Complex	triggering	schemes	
à  High	levels	of	radia;on	

Cleaner	experimental	environment	
à  Less	/	no	need	for	triggers	
à  Lower	radia;on	levels	

High	cross-sec;ons	for	colored-states	 Superior	sensi;vity	for	electro-weak	states	

Very	high-energy	circular	pp	colliders	feasible	 High	energies	(>≈350	GeV)	require	linear	collider	

proton	p

p

g

t

t

t

H

g

to	tackle	the	open	ques9ons	in	par9cle	physics	



BSM	example:	Z’	via	indirect	measurement	
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Minimal	anomaly-free	Z’	model	
Qf	=	gY’(Yf)	+	g’BL(B-L)f	

Observables:	
•  Total	e+e-	è	μ+μ-	cross	sec;on	
•  Forward-backward	asymmetry	
•  Le�-right	asymmetry		

	 	(with	±80%	e-	polarisa;on)	
	
	
If	LHC	discovers	Z’	
(e.g.	for	MZ’=5	TeV)	
CLIC	precision	measurement	of	effecDve	couplings	
	
Otherwise:	
CLIC	discovery	reach	up	to	tens	of	TeV	(depending	on	the	couplings)	

CLICdp	

Z’	

arXiv:1208.1148	

Generator-level	study	



CLIC	BSM	discovery	reach	

CLIC	discovery	reach	for	BSM	phenomena,	studied	for	2	ab-1	at	3	TeV.	Depending	on	the	
exact	models	used,	quoted	values	generally	extend	significantly	beyond	the	HL-LHC	reach.	

New	parDcle	/	phenomenon	 Unit	 CLIC	reach	

Sleptons,	charginos,	neutralinos,	sneutrinos	 TeV	 ≈1.5	TeV	

Z’	(SM	couplings)	 TeV	 20	

2	extra	dimensions	MD	 TeV	 20-30	

Triple	Gauge	Coupling	(95%)	(λγ	coupling)	 0.0001	

Vector	boson	scaCering	ΔFS,0,1	 TeV-4	 5	

μ	contact	scale	 TeV	 60	

Higgs	composite	scale	 TeV		 70	

Electron	size	(test	of	QED	extension)	 cm	 3.1	×	10-18	

Lucie	Linssen,	CERN,	July	17,		2017	 40	



Lucie	Linssen,	CERN,	July	17,		2017	 41	



CLIC	2-beam	accelera;on	scheme	
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CLIC uses a 2-beam acceleration scheme at 12 GHz, gradient of 100 MV/m 

High	centre-of-mass	energy	requires	high-gradient	acceleraDon	
•  High	gradients	feasible	in	normal	conduc;ng	structures	with	high	RF	frequency	(12	GHz)	
•  Ini;al	transfer	from	wall	plug	to	beam	(klystron)	is	efficient	at	lower	frequency	(~1	GHz)	
•  To	keep	power	low,	apply	RF	power	only	at	the	;me	when	the	beam	is	there.	

Drive	Beam	supplies	RF	power	
• 		12	GHz	bunch	structure	
• 		low	energy	(2.4	GeV	-	240	MeV)	
• 		high	current	(100A)	
Main	beam	for	physics	
• 		high	energy	(9	GeV	–	1.5	TeV)	
• 		current	1.2	A	



CLIC	layout	at	380	GeV	

Lucie	Linssen,	CERN,	July	17,		2017	 43	



CLIC	layout	at	3	TeV	
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CLIC	accelerator,	some	pictures	
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CLIC	mechanical	tests	of	2-beam	module		

accelerator	structure,	1	disk	 cut	through	a	CLIC	accelera;on	structure		brazing	of	a	CLIC	structure	

tunable	permanent	magnet	prototype	final	focus	quadrupole	



CLIC	silicon	vertex	and	tracker	R&D	(1)	
CLICpix	(65	nm)	+	50	μm	sensor	 CLICpix2	ASIC	(65	nm)	

SOI	sensor	design	

UBM	and	Indium	bonds	

Planar	sensor,	25	μm	pitch	

HV-CMOS	design	

Bump-bonding,	25	μm	pitch	

TCAD	simula;ons,	HV-CMOS	sensor	

C3PD	HV-CMOS	sensor,	thinned	50	μm	
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CLIC	silicon	vertex	and	tracker	R&D	(2)	

LCD	Timepix3	telescope	at	2016	SPS	test	beam		

Air	cooling	simula;on	
and		
1:1	scale	test	set	up	

power	delivery	+	pulsing	 Flip-chip	gluing	(AC-coupling)		TSV	interconnect	technology	

micro-channel	
cooling	test	

25	μm	

CLICpix	

CCPDv3	

glue	
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CLIC	cost	es;mate	

System	 Value	for	380	GeV	
(MCHF	of	Dec	2010)	

Main	beam	produc;on	 1245	

Drive	beam	produc;on	 974	

Two-beam	accelerators	 2038	

Interac;on	region	 132	

Civil	engineering	&	services	 2112	

Accelerator	control	&	opera;on	infrastructure	 216	

TOTAL	 6690	

Value	for	the	CLIC	
accelerator	at	√s	=	380	GeV	
(11.4	km	site	length)	

Preliminary	es;mate	(scaled	from	CDR)	with	room	for	improvement.		
New	es;mate	will	be	provided	for	European	Strategy	Update.	
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Power	and	energy	
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Power/energy	reduc;ons	are	being	
looked	at		
Structures	are	already	op;mised,	
however	large	contribu;ons	from:	
•  Klystrons	=>	increase	efficiency	
•  Magnets	
•  Ven;la;on/cooling	=>	op;misa;on		

CERN	energy	consump;on	2012	
1.35	TWh	


