Kinematic variables in $\tau \rightarrow 3\pi$ decay: code validation

Vladimir Drugakov

Institute for Nuclear Problems, Minsk

7 July 2017

Analysis

Analysis

- ▶ $Z \rightarrow \tau \tau$ process
- ▶ 2016 data (36 fb⁻¹)
- ▶ combination of various τ decay modes (e, μ, π, ρ, a_1)
- ► RWTH group, V. Drugakov (Minsk), V. Cherepanov (Strasbourg)

Software: analysis tool Artus

- developed by RWTH and KIT groups
- used in several CMS analyses related to tau physics
- most of the machinery is ready
- \blacktriangleright one of the missing elements code for a_1 channel

Kinematic variables in $\tau \to 3\pi$ decay

variable ω_a

- ▶ leads to analysis of 1D histograms
- full sensitivity to τ polarisation
- complicated function, math heavy calculation

implementation

- ▶ Vladimir Ch. shared his code (a1Helper)
- validation was needed (IMHO)
- made independent implementation for cross checks

Code validation

angle calculation

- cross checked using 2 methods
- revealed an error in a1Helper (already fixed)
- now agree with a1Helper (1 of its 3 methods)

structure function calculation

- lacktriangle some discrepancy (ightarrow 10% difference in ω_{a})
 - * I'm using piece of code from Pythia
- control plots are needed

Summary and discussion

- ▶ 2 independent calculations of kinematic variables for a₁ channel
 - one error fixed
 - still some discreapancy
- ▶ at some point all should start using the same code
 - chose one impelementation / do some combination ?
 - ▶ a1Helper: 3 ways to calculate the same kinematic variables
 - my code: at the moment more clean and easy to maintain
- need to add more accurate model for structure function calculations