Tau polarization in $W \rightarrow \tau \nu$ decays at $\sqrt{s} = 13$ TeV (preliminary)

Dmitry Kondratyev, Marina Chadeeva

MEPhl, Moscow

Tau Polaization meeting, July 7, 2017

Motivation

- Tau polarization in $W \rightarrow \tau \nu$ decays has never been studied before at CMS and at 13 TeV (no published results)
- We study tau polarization in au o
 ho
 u channel
- Data: 2016 p-p collizions, 35.6 fb⁻¹
- trigger: HLT_LooselsoPFTau50_Trk30_eta2p1_MET90

Our study is based on these works:

- Tau polarization in $W \rightarrow \tau \nu$ at 7 TeV by ATLAS (result: $P_{\tau} = -1.06 \pm 0.04(\text{stat})^{+0.05}_{-0.07}(\text{syst})$)
- Tau polarization in $Z \rightarrow \tau \tau$ at CMS by V.Cherepanov
- Tau polarization in $Z \rightarrow \tau \tau$ at CMS by Y.Takahashi et al. (AN_2016/142)
- Notes on τ reconstruction and ID: JINST 11(01):P01019 (2016), CMS-PAS-TAU-16-002

- SM allows only ν_L and $\tilde{\nu}_R$ (confirmed by experiments by now)
- angular momentum conserves
- \Rightarrow we expect determined tau helicity in W rest frame:

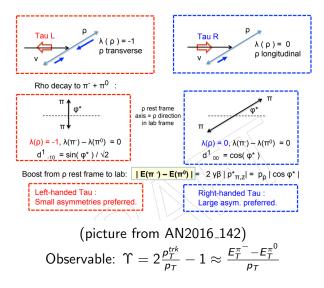
•
$$\tau_L^-$$
 in $W^- \to \tau^- \bar{\nu}_{\tau}$
• τ_R^+ in $W^+ \to \tau^+ \nu_{\tau}$ $(J_W = 1)$

au polarization:

$$P_{\tau} = \begin{cases} \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} & \text{for} \quad \tau^-\\ \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} & \text{for} \quad \tau^+ \end{cases}$$

SM prediction: $P_{\tau} = -1$ for $W \rightarrow \tau \nu$

D. Kondratyev (MEPhI)


τ decay modes

Decay mode	Meson resonance	BR[%]
$\tau^- \to e^- \bar{\nu}_e \nu_\tau$		17.8
$ au^- o \mu^- ar u_\mu u_ au$		17.4
$ au^- o h^- u_ au$		11.5
$ au^- ightarrow h^- \pi^0 u_ au$	ho(770)	26.0
$ au^- ightarrow h^- \pi^0 \pi^0 u_ au$	<i>a</i> 1(1260)	9.5
$ au^- ightarrow h^- h^+ h^- u_ au$	$a_1(1260)$	9.8
$ au^- ightarrow h^- h^+ h^- \pi^0 u_ au$		4.8
Other modes with hadrons		3.2
All modes containing hadrons		64.8

Why choosing $\tau^- \rightarrow h^- \pi^0 \nu_{\tau}$?

- branching ratio
- $\bullet~\mbox{few decay products} \rightarrow \mbox{good reconstruction}$
- $\bullet\,$ sensitivity to $\tau\,$ polarization

Tau polarization observable

Tau leptons are reconstructed using HPS (hadron-plus-strips) algorithm

- algorithm is seeded by jet reconstructed with anti- k_t algorithm
- charged hadrons are reconstructed from tracker
- π^0 s are reconstructed as strips in ECAL
- mass window is applied on the invariant mass of reconstructed particles to account for meson resonances
- MVA-based discriminants against e, μ , QCD-jets are applied

Data: all available 2016 p-p samples, 13TeV (35.6 fb⁻¹)

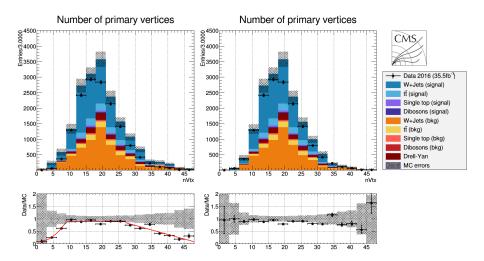
Monte-Carlo: MC is generated using pythia8, where polarization effect is implemented as predicted by the SM

Process	Cross section (pb)	Comments
QCD	720648000	very low statistics, not used
W+Jets	61526.7	low statistics, 4 samples united
Drell-Yan	5765.4	
tŦ	831.8	
Single top	288.7	Single top; Single top $+$ W
Dibosons	68	WW,WZ,ZZ

Signal ($W \rightarrow \tau \nu \rightarrow \rho \nu$ events) and background (other events) separated at generator level for visualization purposes.

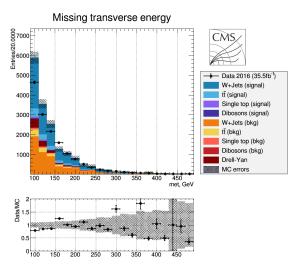
Uncertainties

- Statistical (Data, MC)
- Luminosity uncert. 6.2%
- Cross-section uncert. 5%


Trigger

HLT triggers in 13 TeV datasets either tight or prescaled. We haven't yet implemented prescale factors, which is why tight trigger is used:

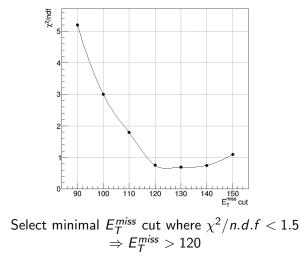
 $HLT_LooselsoPFTau50_Trk30_eta2p1_MET90$


- no electrons or muons with $p_T > 15 GeV$
- τ candidate:
 - decay mode: $\tau \to \rho \nu$
 - HLT cuts:
 - $p_T^{\tau} > 50 \, GeV$
 - $p_T^{trk.} > 30 \, GeV$
 - $|\eta| < 2.1$
 - $E_T^{miss.} > 90 \, GeV$
- o dicriminants:
 - $\bullet\,$ medium MVA τ isolation
 - tight muon rejection
 - tight electron rejection
- $p_T^{\pi^0} > 30 GeV$ to keep Υ distribution symmetric

Pile-up reweighing

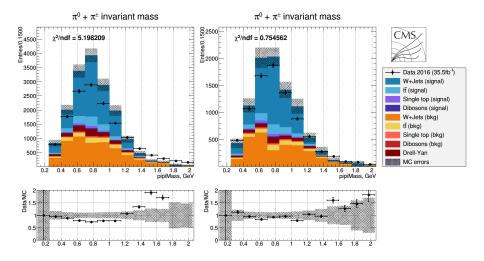
nVtx distributions before (left) and after (right) PU reweighing

E_T^{miss} distribution


Excess of MC events in $E_T^{miss} < 150$ GeV region

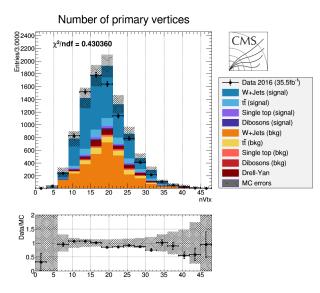
D. Kondratyev (MEPhI)

July 7, 2017 11 / 19

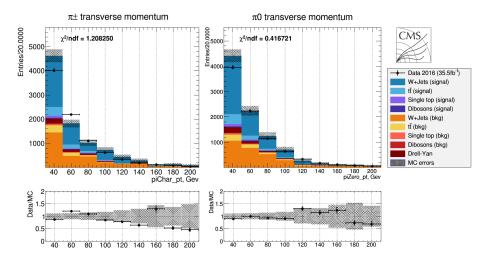

E_T^{miss} cut optimization

 χ^2 /ndf : π^0 + π^{\pm} invariant mass

E_T^{miss} cut optimization


Tau visible mass distribution before and after $E_T^{miss} > 120$ cut

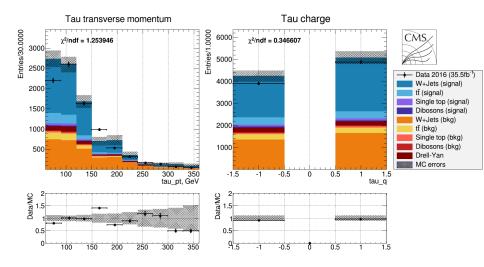
- 4 ≣ ▶


Image: Image:

Check that nVtx distributions agree after the E_T^{miss} cut

July 7, 2017 14 / 19

Results $p_{\tau}(\pi^{\pm})$ distribution (left) and $p_{\tau}(\pi^{0})$ distribution (right)

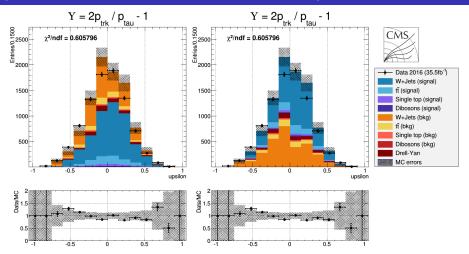


July 7, 2017 15 / 19

- 4 ∃ →

< A

Results $p_{\tau}(\tau_{vis.})$ distribution (left) and tau charge assymetry (right)



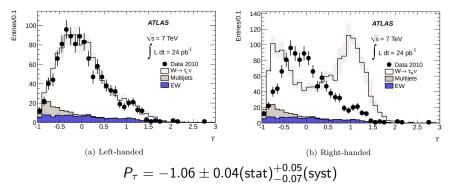
D. Kondratyev (MEPhI)

July 7, 2017 16 / 19

Result

(this is the same plot but with different order of MC samples)

Conclusion:


Data is in agreement with SM within uncertainties.

D. Kondratyev (MEPhI)

Tau polarization in $W \rightarrow \tau \nu$ decay

- Implement prescale factors for HLT and use soft trigger to increase MC statistics
- Generate sample with right-handed au^-
- Calculate the value of polarization $P_{ au}$

ATLAS Collaboration, Eur.Phys.J.C (2012) 72:2062

