

COOLING & VENTILATION INFRASTRUCTURE

Mauro Nonis Alejandro Méjica

CLIC CEIS Working Group Meeting 25/08/2017

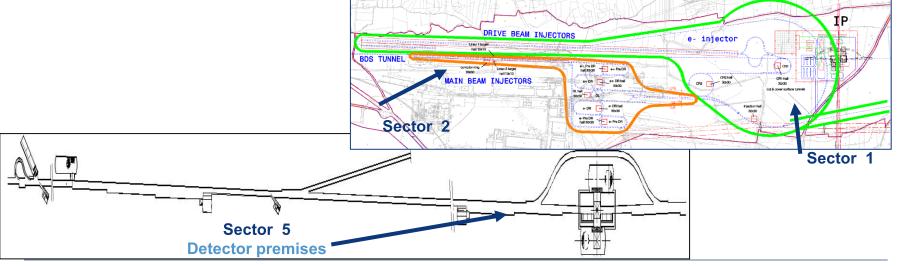
Index

Cooling infrastructure

- CDR Baseline
- Proposed modifications

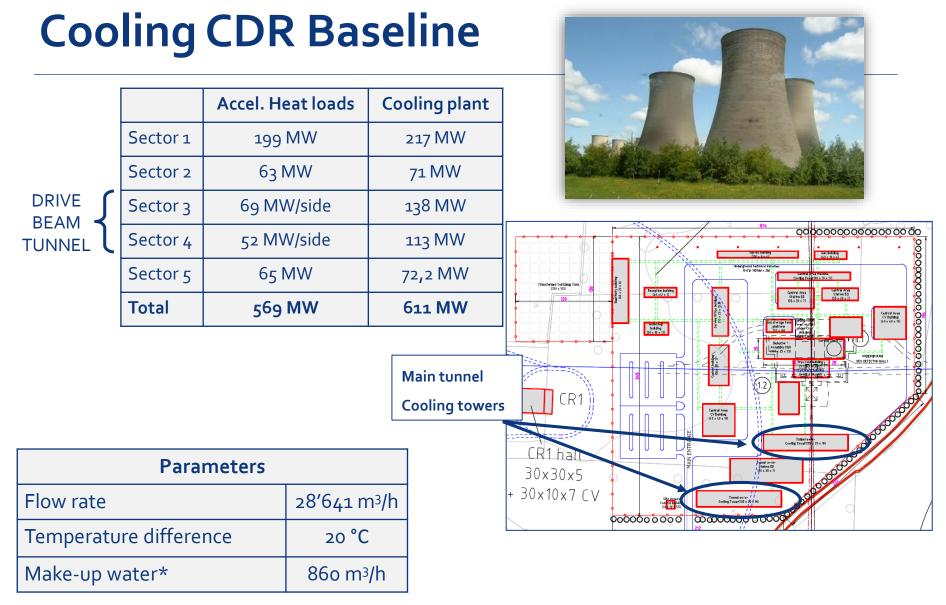
Ventilation infrastructure

- CDR Baseline
- Issues & possible solutions


Conclusions

Cooling CDR Baseline

Facilities divided into 5 cooling sectors according to:


- Functional and operational requirements
- Thermal loads
- Dimensions & geographical distribution
 - Facilities (Drive beam injector building)
 - HVAC and cooling plants (keep reasonable size)
 - Environmental impact: no cooling towers on surface points -> centralised in Prévessin

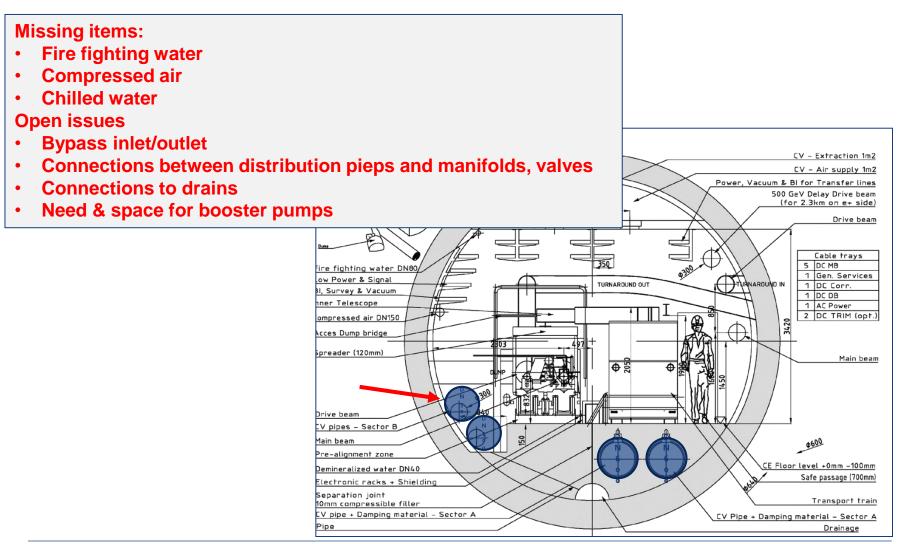
Sector 4 UTRs, dumps, loops Were assessed to the first of the first o

Sector 3 Accelerating structure

* Average water consumption at CERN: 750 m³/h

Cooling heat loads

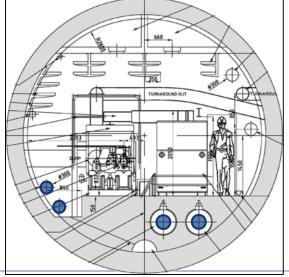
		3TeV CDR values	5
		CDRVC	Power (kW)
Sector 1			198 960
	а	Drive beam injectors building	142 560
	b	Drive beam injectors tunnel	15 840
	с	Frequency multiplication	15 581
	d	Transfer lines	8 028
	e	Chilled water production	16 951
Sector 2			62 922
	a	Main beam injectors building	14 215
	b	Main beam injectors tunnel	1 465
	с	Surface damping rings	21 634
	d	Tunnel damping rings	16 717
	e	Booster tunnel	1066
	f	Booster building	5 364
	g	Chilled water production	2 461
Sector 3 (I	Drive Be	am Machine)	138 00
	a	Tunnel e-	69 000
	b	Tunnel e+	69 000
Sector 4 (I	UTRs, d	umps, loops,)	104 37
	a	Tunnel e-	52 187
	b	Tunnel e+	52 187
Sector 5			65 32
	a	Detector premises	17 000
	b	Accelerator tunnel	41 760
	с	Chilled water production	6 569


New 3 TeV

Sector 3 Drive Beam Machine			115'000 kW
	а	Tunnel e-	57'500
	b	Tunnel e+	57'500

Updating/confirmation of other values needed

Cooling Issues



Cooling: proposed modification

Cooling towers in surface points: Pt 4, 5, 8, 9

Advantages:

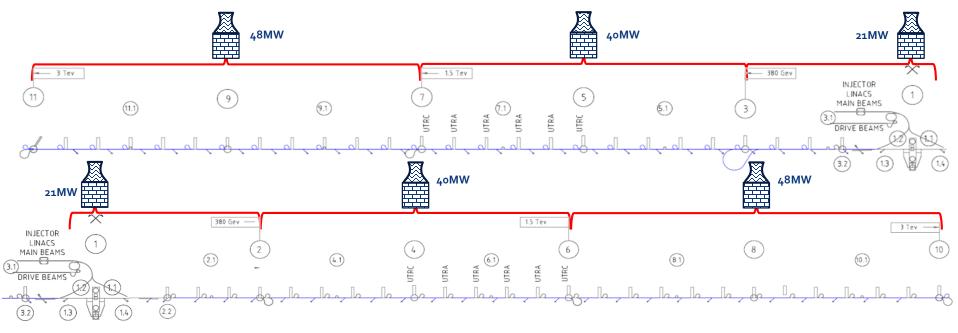
- Smaller pipe diameters in tunnel
- Lower electrical power requested (25%)
- No need for booster pumps
- Bypass, connection to drain: simpler if still needed
- Easier operation (balancing of circuit, ...)



Disadvantages:

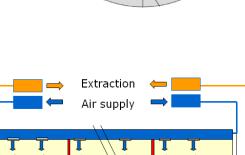
- Stronger environmental impact (outside CERN)
- Bigger surface needed for installation
- Impact on shaft dimensions?

However: manifold issue still present



Cooling: possible solutions

Cooling towers in surface points: Pt 4, 5, 8, 9



9

Ventilation CDR

Indoor conditions

Location	Summer conditions [°C]	Winter conditions [°C]	
Underground installations	21±1	21±1	
Surface buildings with controlled temperature	25±1	18±1	

- Ventilation of main beam tunnel: supply & extraction located at each surface point
- Ventilation of UTRC, UTRA, roundabouts, dumps: dedicated AHUs installed in UTRA or UTRC caverns. Chilled water from surface points
- Damping rings, delay loops, frequency multiplication, transfer lines: one ٠ AHU for supply and one for extraction per ring or sector. Relay fans for dead end tunnels.
- Drive beam injectors tunnel: supply and extraction located on surface ٠
- All others: one dedicated unit per facility ٠

Ventilation heat loads

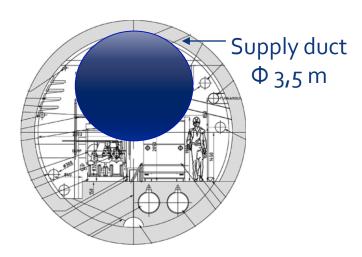
oTeV			
3TeV Old values (CDR)	Equipment heat load	Surface building	Equipment heat load
(CDK)	[kW]		[kW]
Tunnel Drive Beam injector	1760	Drive beam Linac	15 840
Tunnel Main Beam injector	380	Main Beam Linac Hall	608
Damping rings	950		000
Tunnel booster LINAC	100	Linac 1 and 2 target halls	
Transfer line to JP, SP	450	Compton ring	0
Loop	230	Damping rings area (5 bu	uildings) 0
Transfer line e	0	Booster linac	0
Transfer line e ⁺	0	Injection hall	170
Frequency and pleadon Main tunnel* e ⁺	405 528	Combiner ring 1 & 2	380
Main tunnel* e ⁻	528	<u> </u>	
Tumaryon - and tunnel	328	Cryo building	n.a.
Bunch compressor e ⁻	35	Gas building	n.a.
Turnaround e ⁺	35		
Bunch compressor e ⁺	35		
UTRC	95		
UTRA	95		
Drive Beam dump caverns/	5		
post decelerators			
Loop	10		
BDS - intersection point	1560		
Detector halls	650		
Main beam dump cavern	140		
Service halls cavern (pt 2.2	150		
and 3.2)			
BC2 caverns	20		_
Bypass tunnel	0	Duct size	0
Escape tunnel	0	Docconze	~
Pressurized area shaft	0	[mag]	Europ /l=1
* per sector, between two sur	face points	[m2]	[m3/h]

Updating/confirmation of other values needed

No new values except for power dissipation to air by the accelerating structures.

	W/m	Total sector
CDR	144	528 kW
New	538	11,5 MW

)))	Duct size [m2]	Q [mȝ/h]	ΔT [°K]	Cooling power/sector [kW]	Heat load [W/m]
	1	72′000	10	250	47



Ventilation main tunnel: heat load

- Technical loads not compatibles with achievable flow rate for the tunnel (duct size)
- Semi-transversal ventilation does not act directly on the source of the heat
- Smoke extraction to be taken into account

T max in tunnel [°C]	ΔT [°K]	Q [mȝ/h]	Φ duct [m]
21	4	886'000	4,0
26	9	838'000	3,5
30	13	580'000	3

LHC sector: 36'000 m3/h

Ventilation: possible solutions

A possible solution would be a combination of:

- 1. Increasing the allowable temperature in the tunnel to reduce the heat load to air e.g. to 30°C. →working environment
- 2.Supplying fresh air through a duct coming from each surface point, dissipating part of the heat load. The air would return through the tunnel and the shafts. → gradient of temperature along the tunnel
- 3. Cool the air locally and not discharge the heat in the tunnel:
 - a) Encapsulating the modules:
 - 1. Installing heat exchangers with an additional cooling circuit to reduce the load on the air/become neutral to the tunnel ambient,
 - 2. Installing fans inside the "box" forcing the air inside it through small heat exchangers connected to an additional (chilled) water network
 - b) Additional units all along the tunnel \rightarrow issues wit space, air direction, effectiveness of the solution

Separate the tunnel ventilation from the heat load removal f

T₃ water ~28 °C

T1

T4 water ? °C

0

Conclusions

Cooling infrastructure

- The CDR solution of centralising all cooling towers in the center results in huge pipes and need of booster pumps plus other technical problems.
- Best solution would be to install cooling towers in some surface point for the main tunnel.
- Updates of heat loads from all users is needed.
- Don't forget other services (compressed air, fire fighting water, etc.) for the definition of the cross-section.

Ventilation infrastructure

- A tunnel ventilation only (as in the CDR) is not adapted for the huge air loads inside the main tunnel.
- Different solutions to be evaluated in order to increase acceptable loads:
 - 1. Increase the allowable temperature in the tunnel
 - 2. Insulate the CLIC modules
 - 3. Encapsulate the CLIC modules
 - 4. Install AHU machines to tackle the heat load more locally
- The final solution would include a combination of the previous.
- The smoke extraction and radiation protection systems need to be taken into account.
- Updates of heat loads from all users is needed.

THANKS FOR YOUR ATTENTION

