CLIC Civil Engineering Update

<u>Matthew Stuart</u> - John Osborne SMB-SE-FAS

Reminder - Summary From 05/05/2017

- Cooling and Ventilation solutions essential to allow a feasible cross section to be produced.
- Transport options to be explored.
- Continue CLIC-TOT development Task 3 & 4. Data Integration and Initial Draft Version to be Produced for Testing).
- Produce 3D schematic of the "baseline CLIC machine".
- A detailed cost estimate for infrastructure to be produced and work together with ILC on areas of synergy.

Civil Drawing Update

- General Cross-section update for the Klystron Design.
- Klystron Injection Complex surface buildings layout Layout.
- Shaft Cross section for Klystron Installation.
- Initial Conceptual 3D Schematic produced for CLIC.

Klystron Single Tunnel - TBM

Extraction located above false ceiling

TBM Tunnel

 Preferred option is the 10m ID single tunnel TBM option.

Klystron Surface Buildings

Removal of drive beam complex.

- For a Klystron 380 GeV Design the Drive Beam Complex is no longer required.
- Removal entirely of the 2.5km building and all associated cut and cover tunnels.

Klystron Surface Buildings

- For a Klystron 380 GeV Design the Drive Beam Complex is no longer required.
- Removal entirely of the 2.5km building and all associated cut and cover tunnels.

- Initial Shaft has only one lift and two stair cases.
- To adhere to safety requirements and be consistent with FCC two lifts and one stair case is proposed.
- Updated Cross-section allows access to both lifts from staircase.

Shafts 1.2 and 2 to 11.

Updates:

- Initial Shaft has only one lift and two stair cases.
- To adhere to safety requirements and be consistent with FCC two lifts and one stair case is proposed.
- Updated Cross-section allows access to both lifts from staircase.

Previous Cross-section shown on the 21st of July.

- Initial Shaft has only one lift and two stair cases.
- To adhere to safety requirements and be consistent with FCC two lifts and one stair case is proposed
- Updated Cross-section allows access to both lifts from staircase.

Remaining Questions:

- Is the new dimensions of the handling open adequate?
- Are the lift dimensions and capacities adequate?
- Services within the shafts still need confirmation including ventilation.

Remaining Questions:

- Is the new dimensions of the handling open adequate?
- Are the lift dimensions and capacities adequate?
- Services within the shafts still need confirmation including ventilation.

Remaining Questions:

- Is the new dimensions of the handling open adequate?
- Are the lift dimensions and capacities adequate?
- Services within the shafts still need confirmation including ventilation.

380 GeV CLIC 3D Schematic

3D Schematic.

- This schematic has exaggerated some elements of the design for visual clarity.
- It is still under development and any feedback is welcome!

CLIC-TOT - Reminder

Reminder from the last update

- Datasets are to be acquired and defined, this includes:
 - Surface Topography.
 - Surface Constraints e.g. Buildings and roads.
 - Protected Areas.
 - Hydrological Data.
- Produce Lattice Files for baseline design.
- Develop User Interface For the CLIC TOT.
- Geological layer showing top of molasse and top of limestone.

TOT Timeline

The proposed programme task completion dates are as follows, assuming a project commencement at the end of April 2017:

Task 1	Establish Project Setup and Technical Basis
Task 2	Data and Functionality Prioritisation
Task 3	Specifications and TOT-CLIC architecting/wireframing (Concept Stage)
Task 4	Data Integration and TOT-CLIC (beta) development Initial TOT-CLIC beta version
Task 5	Finalised TOT-CLIC Development
Task 6	Troubleshooting and Technical Support

Data Integration

Data Integration:

- Completed:
 - Surface Elevation Model for the CLIC study area
 - Surface Constraints for the CLIC study area.
 - Geological Study area, top of molasse and limestone.
 - Protected area prioritisation within the CLIC Study areas
- Ongoing:
 - Lattice Files Initial 380 GeV has been produced, however, further lattice files for the 1.5 TeV and 3 TeV energy stages will be required for the final version of the tool.

Task 1	Establish Project Setup and Technical Basis
Task 2	Data and Functionality Prioritisation
Task 3	Specifications and TOT-CLIC architecting/wireframing
	(Concept Stage)
Task 4	Data Integration and TOT-CLIC (beta) development
	Initial TOT-CLIC beta version
Task 5	Finalised TOT-CLIC Development
Task 6	Troubleshooting and Technical Support

Thanks to Mark Jones and Andrea Latina for their work on the lattice files.

CLIC Study Area

All Datasets have now been acquired and defined:

- Protected Areas:
 - Only the selected areas shown have been included in the tool.
 - The areas identified are those deemed the most relevant at this stage in the project:
 - Natural Habitat of Community interest at Natura 2000 sites (EU).
 - National Natural Reserves. Geneva.
 - Ramsar Sites (Wetlands)
 - Natural Reserves. France
 - Biotype protection Order (Protected Habitat).

Note: Listed buildings are covered in the Building data layer.

CLIC Interface

CLIC-TOT Interface:

- Inputs:
 - IP co-ordinates.
 - IP Depth.
 - Gradient.
 - Energy stage.
- Outputs
 - Tunnel section geology
 - Depth of tunnel below any watercourses
 - No. of clashes with boreholes.
 - Shaft length and geology.
 - Surface Constraints.

CLIC Interface

CLIC TOT Interface:

- Comparison Overview
 - Tunnel & shaft geology.
 - Shaft geology and length.
 - Natural features.
 - Shaft locations.
- Related Scenarios
 - Identifies the parent scenario of each newly saved scenario.
 - Attributes to be displayed are still to be identified.

380 test

FCC Consultants Cost model to be modified for CLIC.

Requirements:

- Cost estimate for the Klystron TBM design
- Cost estimate for the Klystron roadheader design
- Cost Estimate for the New 380 GeV Drive Beam Design
- Comparison to the previous CDR cost estimate for the drive beam.

- 1. Exhaustive list of all underground, surface and temporary Structures.
- 2. Dimensional Input tables for all the different structures
- 3. Basic Quantities and costs Table for each structure type options for different tunnelling methods
- 4. Total quantities and cost for ALL structures.
- 5. Quantity and cost calculations based on rates used for FCC for each structure type.

1	Surface Structures	Length	Width	Height						
2	Access Shaft Electricity Building	20	20	6	<u>/</u>					
3	Booster CV Building	30	30	10						
4	Booster CV Building	30	30	10						
5	Booster Injector Building	500	5	3						
6	Car parking Exp. Area	50	100							
7	Car parking Access Shaft	50	50							
8	Central Area CV Building	40	40	10						
9	Central Area Machine Cooling Tower	90	10	17						
10	Central Area Station ED	35	30	7						
11	Central Area Station EG	35	20	7						
12	Compton Ring Building	30	30	7						
13	Control Building	50	25	7						
14	CR1 Hall + CV	30	40	7						
15	CR2 Hall + CV	30	40	7						
16	Cryo Cold Building	50	18	12						
17	Cryo Warm Building	50	18	12						
18	Detector Assembly Hall	100	25	25						
19	Drive Beam Cooling Tower	90	10	16						
20	Drive Beam Cooling Tower	90	10	16						
21	Drive Beam CV Building	25	20	7						
22	Drive Beam Injector Building	2560	30	9						
23	Drive Beam Station ED	75	42	7						
24	Drive Beam Station EG	42	20	7						
25	e Damping Ring Hall + CV	30	40	7						
26	e [†] Damping Ring Hall + CV	30	40	7						
	·									
27	e ⁺ Pre Damping Ring Hall + CV	30	40	7						
28	Electricity Building	80	20	6						
29	Gas Building	40	10	4						
30	Gas Storage Tank Platform	32	16	1						
31	Injection Hall + CV	30	40	7						
32	Linac 1 Target Hall	10	10	7						
	Linac 2 Target Hall	10	10	7						
34	Main Beam CV Building	25	20	7						
35	Main Beam Cooling Tower	75	10	16						
36	Main Beam Injector Buillding	880	7	3						
37	Main Beam Station ED	68	35	7						
38	Main Beam Station EG	35	15	7						
39	Reception Building	40	12	7					L	
	◆ Input tables Structure List	All Und	derground	Structures	All Surface Struc	tures	All Temp	Work Structure	e:	5

- 1. Exhaustive list of all underground, surface and temporary Structures.
- 2. Dimensional Input tables for all the different structures.
- 3. Basic Quantities and costs Table for each structure type options for different tunnelling methods
- 4. Total guantities and cost for ALL structures.
- 5. Quantity and cost calculations based on rates used for FCC for each structure type.

- 1. Exhaustive list of all underground, surface and temporary Structures.
- 2. Dimensional Input tables for all the different structures
- 3. Basic Quantities and costs Table for each structure type options for different tunnelling methods
- 4. Total quantities and cost for ALL structures.
- 5. Quantity and cost calculations based on rates used for FCC for each structure type.

15 16 17 Fact		ice (EUR)		(EUR/m³)													Q			
14 Fact 15 16 17 Fact		ice (EUR)			(EUR/m³)	(EUR/m³)	(EUR/m³)	(EUR/m³)	(EUR/kg)	(EUR/m)	(EUR/m³)	(EUR/kg)	(EUR/m³)	(EUR/kg)	(EUR/m³)	(EUR/m³)	(EUR/kg)	(EUR/m²)	(EUR/m³)	(EUR/I
15 16 17 Fact	tor for			287.39	204.05	264.57	756.18	300.07	2.11	31.70	540.50	2.11	581.13	2.11	183.85	226.11	2.11	31.70	226.11	. 7
16 17 Fact		Material Cost Variability:			1.00															
17 Fact				G. Treatment	TBM Excav.	H Mined Excav.	V. Mined Excav.	Shotorete	Shotorete Re.	Rockbolts	D-Vall C.	D-Vall R.	Pre-Cast C.	Pre-Cast R.	Annulus Grout	Cast Insitu C.	Cast Insitu R.	Waterproofing	Invert Concrete	Invert R
17 Fact				(EUR/m³)	(EUR/m³)	(EUR/m³)	(EUR/m³)	(EUR/m³)	(EUR/kg)	(EUR/m)	(EUR/m³)	(EUR/kg)	(EUR/m³)	(EUR/kg)	(EUR/m³)	(EUR/m³)	(EUR/kg)	(EUR/m²)	(EUR/m³)	(EUR/I
	tored M	easure Price (EUR)		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
18	Und	erground Quantities Per Meter Run of Tunnel																		
19			Wastage Factor =	1.20	1.10	1.10	1.10	1.25	1.05	1.05	1.10	1.05	1.10	1.05	1.20	1.10	1.05	1.10	1.10	
20 Tup	e No.	Structure		G. Treatment	TBM Excav.	H Mined Excav.	V. Mined Excav.	Shotcrete	Shotcrete Re.	Rockbolts	D-Vall C.	Pile B.	Pre-Cast C.	Pre-Cast R	Annulus Grout	Cast Insitu C.	Cast Insitu R.	Waterproofing	Invert Concrete	Invert F
21				m³/m	m³/m	m³/m	m³/m	m³/m	kařm	ml/m	m³/m	kałm	m³/m	kg/m	m³/m	m³/m	kařm	m²/m	m³/m	kg/n
	1	Machine Tunnel - TBM Option 1		0.26	38.27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.28	719.16	3.68	0.00	0.00	0.00	4.66	
	2	Machine Tunnel - TBM Option 2		0.28	44.86	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.85	784.48	3.99	1.69	1.61	7.87	6.65	
24	3	Machine Tunnel - Mined Tunnel G. Rock		0.26	0.00	35.58	0.00	3.72	62,44	11.38	0.00	0.00	0.00	0.00	0.00	3.59	102.68	14.58	3,43	
	4	Machine Tunnel - Mined Tunnel Poor G.		2.01	0.00	39.01	0.00	7.67	322.07	23.63	0.00	0.00	0.00	0.00	0.00	4.34	310.60	14.74	3.77	
	5	Bypass Tunnel - TBM Option 1		0.26	38.27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.28	719.16	3.68	0.00	0.00	0.00	4.66	
	6	Bypass Tunnel - TBM Option 2		0.28	44.86	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.85	784.48	3.99	1.69	1.61	7.87	6.65	
	7	Bypass Tunnel - Mined Tunnel G. Rock		0.27	0.00	40.19	0.00	3.95	82.99	11.38	0.00	0.00	0.00	0.00	0.00	3.75	107.33		4.84	
	8	Bypass Tunnel - Mined Tunnel Poor G.		2.10	0.00	43.82	0.00	8.14	410.24	23.63	0.00	0.00	0.00	0.00	0.00	4.53	324.50		5.22	
	9	Beam Transfer Tunnel - TBM Option 1		0.20	21.95	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.60	527.26	2.77	0.00	0.00		0.41	
	10	Beam Transfer Tunnel - TBM Option 2		0.22	27.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.17	592.57	3.08	1.35	1.29		1.59	
	11	Beam Transfer Tunnel - Mined Tunnel G. Rook		0.27	0.00	40.19	0.00	3.95	82.99	11.38	0.00	0.00	0.00	0.00	0.00	3.75	107.33	15.25	4.84	
	12	Beam Transfer Tunnel - Mined Tunnel Poor G.		2.10	0.00	43.82	0.00	8.14	410.24	23.63	0.00	0.00	0.00	0.00	0.00	4.53	324.50		5.22	
	13	M. Dumo Tunnel - TBM Option 1		0.23	28.53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.34	611.22	3.17	0.00	0.00	0.00	1.14	
	14	M. Dump Tunnel - TBM Option 2		0.25	34.26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.91	676.53	3.48	1.56	1.49		2.53	
	15	M. Dump Tunnel - Mined Tunnel G. Rock		0.27	0.00	40.19	0.00	3.95	82.99	11.38	0.00	0.00	0.00	0.00	0.00	3.75	107.33	15.25	4.84	
	16	M. Dump Tunnel - Mined Tunnel Poor G.		2.10	0.00	43.82	0.00	8.14	410.24	23.63	0.00	0.00	0.00	0.00	0.00	4.53	324.50	15.41	5.22	
	17	Drive Beam Turnaround - Good Rock		0.14	0.00	8.89	0.00	1.81	30.47	7.58	0.00	0.00	0.00	0.00	0.00	1.38	39.40	7.04	0.86	
	18	Drive Beam Turnaround - Poor Ground		1.25	0.00	10.65	0.00	3.22	135.22	7.58	0.00	0.00	0.00	0.00	0.00	1.75	125.33	7.21	1.02	_
	19	Main Beam Turnaround - Good Rock		0.18	0.00	16.08	0.00	2.46	41.36	7.58	0.00	0.00	0.00	0.00	0.00	1.73	49.58		3.10	_
	20	Main Beam Turnaround - Poor Ground		1.50	0.00	18.40	0.00	4.30	180.57	7.58	0.00	0.00	0.00	0.00	0.00	2.19	156.93	9.06	3.35	
	21	Access Shafts - Good Rock		9.70	0.00	0.00	171.24	3.25	0.00	0.00	71.15	0.00	0.00	0.00	0.00	29.52	4226.84		0.00	
	22	Access Shaft - Poor Ground		1.30	0.00	0.00	95.25	10.06	169.06	73.50	0.00	0.00	0.00	0.00	0.00	13.27	760.01	34.56	0.00	
	23	Machine shaft - Good Rock		16.08	0.00	0.00	465.56	4.18	0.00	0.00	129.26	0.00	0.00	0.00	0.00	62.87	9001.66		0.00	
	24	Machine Shaft - Good Hook Machine Shaft - Poor Ground		2.34	0.00	0.00	335.29	19.09	320.80	88.20	0.00	0.00	0.00	0.00	0.00	32.31	1850.56		0.00	
	25	Survey Boring Shaft - Good Rook		4.07	0.00	0.00	7.78	0.00	0.00	0.00	0.00	0.00	2.70	128.65	0.56	2.07	296.88		0.00	
	26	Survey Boring Shaft - Bood Hook Survey Boring Shaft - Poor Ground		0.62	0.00	0.00	4.98	1.33	22.27	49.00	0.00	0.00	0.00	0.00	0.00	1.31	75.21	7.26	0.00	
	27	Connection Tunnels & Galleries G. Rock MT		0.02	0.00	12.55	0.00	2.17	36.41	7.58	0.00	0.00	0.00	0.00	0.00	1.57	44.86	8.04	1.95	
	28	Connection Tunnels & Galleries P. Ground MT		1.39	0.00	14.62	0.00	3.81	159.96	7.58	0.00	0.00	0.00	0.00	0.00	1.99	142.26	8.21	2.16	
	29	Drive Beam Turnaround Enlargement - Good Rock		1.35	0.00	14.02	0.00	5.01	139.90	7.50	0.00	0.00	0.00	0.00	0.00	1.55	242.20	0.21	2.10	104
	30	Drive Beam Turnaround Enlargement - Poor Ground																		-
52		QUANTITIES PER STRUCTURE																		\vdash
	e No.	Structure		G. Treatment	TBM Excav.	H Mined Excav.	V. Mined Excav.	Shotorete	Shotcrete Re.	Rockbolts	D-Vall C.	Pile B.	Pre-Cast C.	Pre-Cust B	Annulus Grout	Cast Insitu C.	Cast Insitu R.	Waterproofing	Invert Concrete	Invert B
54	A 140.	or ottole		m³/m	m³/m	m³/m	m³/m	m³/m	kg/m	milm	m³im	kg/m	m²/m	kg/m	m³/m	m³/m	kg/m	m²/m	m³/m	kg/n
	101	UTRC Shaft Cavern - Good Rook		127.71	0.00	19229.87	0.00	1224.74	20575.61	2706.90	0.00	0.00	0.00	0.00	0.00	2280.96	235972.92	3287.51	2336.96	
	102	UTRC Shaft Cavern - Good Hook		863.30	0.00	20521.91	0.00	1768.79	74289.01	6684.30	0.00	0.00	0.00	0.00	0.00	2492.66	417960.86	3351.49	2529.37	
_	103	UTRC Shielding Door Cavern - Good Rock		005.30	0.00	20321.31	0.00	1700.75	7-205.01	000-7.30	0.00	0.00	0.00	0.00	0.00	2752.00	.17300.00	3331.43	2323.31	12-3.
	103	LITEC Shielding Door Cavern - Bood Book																		\vdash
1			Quantities U	Total Qua	ntities S	Total Qua	ntities T	Total Cost I	I Tota	l Cost S	Total	Cost T	Cc	(+) :	1					
<u></u>		Saste Quantities and Costs	- Quantities 0	rotal Qua	nades 5	, otal Qui	made 3 1	. otal cost (Tota		, otal	00501								

- 1. Exhaustive list of all underground, surface and temporary Structures.
- 2. Dimensional Input tables for all the different structures.
- Basic Quantities and costs Table for each structure type - options for different tunnelling methods
- 4. Total quantities and cost for ALL structures.
- 5. Quantity and cost calculations based on rates used for FCC for each structure type.

6																	
7	Туре	Location	Function	Location	Structur e Length	Ground Treatme nt	TBM Excavati on	Horizont al Mined Excavati on		Shotcret e	Shotoret e Reinf.	Rockbol ts	Concret e for D- Walls	Reinf. for D- Walls	Pre- Cast Concret e	Pre- Cast Concret e Beinf.	Annulus Grout
146		20	Main Tunnel	09													
147	1		Machine Tunnel - TBM Option 1														
148	2		Machine Tunnel - TBM Option 2														
149	3		Machine Tunnel - Mined Tunnel G. Rock														
150	4		Machine Tunnel - Mined Tunnel Poor G.														
151			Main Tunnel	End 3TeV													
152	1		Machine Tunnel - TBM Option 1														
153	2		Machine Tunnel - TBM Option 2														
154	3		Machine Tunnel - Mined Tunnel G. Rock														
155	4		Machine Tunnel - Mined Tunnel Poor G.														
156			Bypass Tunnel														
157		BDS1	Bypass Tunnel	BDS 1													
158	5		Bypass Tunnel - TBM Option 1														
159	6		Bypass Tunnel - TBM Option 2														
160	7		Bypass Tunnel - Mined Tunnel G. Rock														
161	8		Bypass Tunnel - Mined Tunnel Poor G.														
162		BDS2	Bypass Tunnel	BDS2													
163	5		Bypass Tunnel - TBM Option 1														
164	6		Bypass Tunnel - TBM Option 2														
165	7		Bypass Tunnel - Mined Tunnel G. Rock														
166	8		Bypass Tunnel - Mined Tunnel Poor G.														
167			Beam Transfer Line Tunnels														
168		BDS1	Beam Transfer Tunnels	BDS 1													
169	9		Beam Transfer Tunnel - TBM Option 1														
170	10		Beam Transfer Tunnel - TBM Option 2														
171	11		Beam Transfer Tunnel - Mined Tunnel G. Rock														
172	12		Beam Transfer Tunnel - Mined Tunnel Poor G.														
173		BDS2	Beam Transfer Tunnels	BDS 2													
174	9		Beam Transfer Tunnel - TBM Option 1														
175	10		Beam Transfer Tunnel - TBM Option 2														
176	11		Beam Transfer Tunnel - Mined Tunnel G. Rock														
177	12		Beam Transfer Tunnel - Mined Tunnel Poor G.														
178			Main Beam Dump Tunnel														
179		BDS 1	Main Beam Dump Tunnel	BDS 1													
180	13		M. Dump Tunnel - TBM Option 1														
181	14		M. Dump Tunnel - TBM Option 2														
182	15		M. Dump Tunnel - Mined Tunnel G. Rock														
183	16		M. Dump Tunnel - Mined Tunnel Poor G.		1												
184		BDS 2	Main Beam Dump Tunnel	BDS 2													
105	12		M. Duran Turanal TRM Castra 4														
	()	Basic	Quantities and Costs Total Quantities U	Total Quantitie	s S	Total Qua	ntities T	Total	Cost U	Total (Cost S	Total Co	ost T	Cc	÷ : [4	

Process:

Exhaustive list of all underground, surface and

64 Reinforcement =

65 Dimple sheet area

Summary of Quantities

m³/m

0.22

0.23

0.21

m³/m

66 Drainage pipe =

- Quantity and cost calculations based on rates used for FCC for each structure type.

Summary of quantities can then be linked back to the Basic

	quantities table. Do = 5.80 m																													
62	Invert qu	iantities:													Tunnel sh	otcrete re	inforceme	306.74	kg/m											_
63	Concret	e volume =	3.43	m ³ /m of tunn	iel										Permaner	nt lining vo	dume =	3.94	m ³ /m of t	unnel	Internal S	tructures	Quantities	ž.						1
64	Reinford	ement =	205.72	kg/m³											Permaner	nt lining re	inforceme	295.80	kg/m		x =	1.00	m			Conc. Ve	0.80	m³/m of tu	innel	
65	Dimples	heet area :	6.26	m²/m of tunn	iel										Waterpre	oofing are	a =	13.40	m²/m of t	unnel	α=	0.352	radians	20.17	deg	Rebar =	144.80	kg/m³		1
66	Drainage	e pipe =	1	m/m of tunn-	el .										Rockbol	ting lengtl	=	22.50	m/m of tu	innel	y =	1.32	m			Safety d.	0.0033	U/m		
67	Summa	ry of Qu	antities																											
68		G. Trealment	TOH E.z.	H. Hierd Ex.	V. Hierd Es.	Shelerrir	Skelerrir Re	Reskielle	DAVAILC.	DWall R.	Per-Cast C.	Per-Caul R.	Acceles Grac	Cael Ineile C	Cael Inville R	Valergennéin	eerel Casser	laarel Reinf.	iller Haleri.	Diaple Sheet	Desinage Pip	eleccal Sic.	elereal Ste. I	lal. Sir. Sirelu.	Safely Dea					
69		-77-	-7-	-74-	-7-	-77-	6974	-17-	-7-	kg/=	-77-	64/-	-7-	-77-	kg/m	-77-	-7-	69/-	-77-	-7-	-/-	-77-	697-	kg/a	U-11					ı
70	TPM O- N	ادد ۱ ا	3,179								5.71	684 90	3.07				1 21	25/1/39		5.02	1.00	0.78	140.97		====	1				
	→ S-Exp Sites S-Inj Sites S-Acc Sites Machine Tunnel Quant. Bypass T Quant. B. Transfer T Quant. Main B. Dump T Quant. Drive ⊕ :																													

Tunnel permanent lining OD :

32.35 m³/m of tunnel 2.97 m³/m of tunnel

10.83 m/m of tunnel

59.46 kg/m 3.26 m³/m of tunnel 97.79 kg/m 13.25 m²/m of tunnel

Cost Breakdown from CDR

Table showing the cost breakdown of the 500 GeV Scenario A and B

"The difference in value between the two scenarios is the price to pay for the higher luminosity of 500 GeV in scenario A: the higher beam current requires additional RF power to be installed in the injectors and larger-aperture accelerating structures operating at lower gradient, thus calling for an additional fifth sector in each of the main linacs"

		Value A [MCHF]	Value B [MCHF]
	Civil engineering	1432	1382
	Electricity	326	282
Civil engineering	Survey and alignment	31	31
and services	Fluids	494	445
	Transport/installation	100	90
	Safety	20	20
	Total	2403	2250

Summary

Future Study - TBM Tunnel.

- Compatibility with a smaller single tunnel upgrade requires further study.
- Failure rate of klystron modules is high what are the access requirements for maintenance and is this possible with 1.5m shielding wall?
- First Cost Estimates and Comparisons to be done using the Costing Worksheet.
- Radiation study for the shielding wall to be initiated.
- First indication is that a TBM tunnel is cheaper than an ILC shaped mined tunnel.

CLIC TOT

• Tool is currently in testing, any feedback is welcome.

Civil Drawings

- Cross Sections to be amended to account for any changes in Transport and CV systems.
- Produce 3D schematics of the Klystron Machine.
- Integration of known services into the cross-sections from each discipline.
- Continually update the drawings as and when new information is acquired.
- Next Meeting is on the 01st of December.
- LCW Strasbourg: 23rd to the 27th October Breakdown of costs by discipline required.
- CLIC Workshop at CERN 22nd to the 26th January Update from each team required.

Thank you to all contributors (John Osborne, Raul Ortega, Youri Robert etc...)