CLIC power update status

1.12.2017

Alexej Grudiev

What is there

- CLIC power has been estimated for the CDR (2012) by J.-B. Jeanneret
- Parameterized model has been developed (J.-B. Jeanneret, CLIC-note-990 (2013))
- This model has been used for CLIC re-baselining optimization and for power estimate in staged CLIC (Yellow report: CERN-2016-004)
- In the view of the preparation for European Strategy update, this model needs to be reviewed for completeness and updated if needed

Completeness: high level

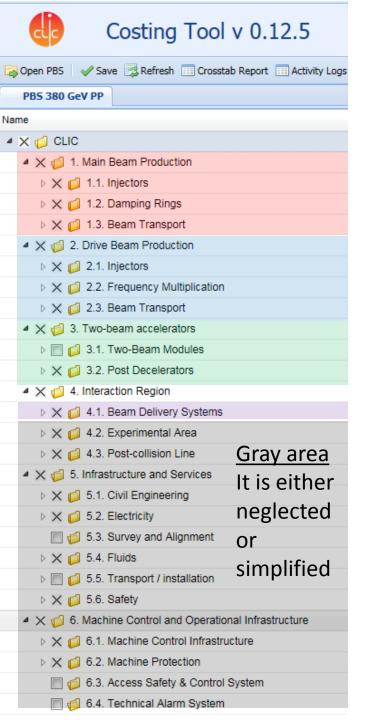
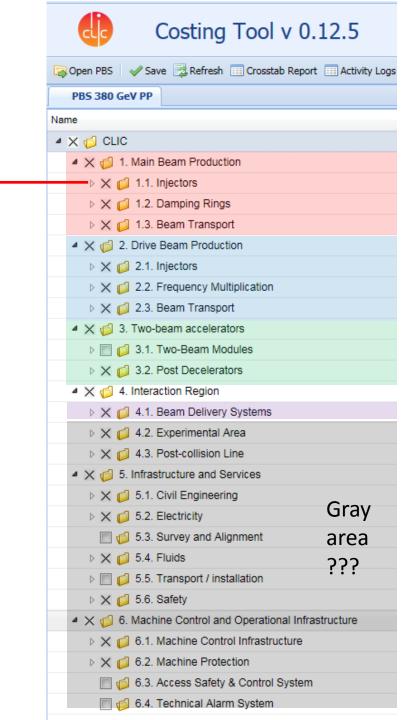

1. Use CERN costing tool PBS for checking completeness of the model

Table 2: The breakdown of CLIC in different systems (upper part) and components (bottom part).

1	DB_inj	The drive beam linac
2	MB_{inj}	The main beam production complex (linacs and positron production)
3	$\mathrm{MB}_{ ext{-}}\mathrm{pdr}$	The main beam pre-damping ring(s)
4	$\mathrm{MB}_{-}\mathrm{dr}$	The main beam damping rings
5	$\mathrm{MB_tttu}$	The main beam transfer to tunnel, including the booster linac
6	$\mathrm{DB_fm}$	The drive beam frequency multiplication
7	$\mathrm{DB_tttu}$	The drive beam transfer to tunnel
8	MB_titu	The main beam transfer in tunnel,
9	$\mathrm{DB_titu}$	The drive beam transfer in tunnel, including turn-arounds
1) DB_ldl	The drive beam long delay line, including one turn-around
1	1 DB_postd	The spent drive beam extraction and the dump
13	2 ML_mb	The main beam part of the main linac
13	3 ML_db	The drive beam part of the main linac
1	4 ML_bd	The main beam delivery line
1	5 BI+CO	Overall beam instrumentation and control
c.	l RF	The radio-frequency power, including the klystron and modulator losses
c.	2 MAGNET	The magnet power, including the rectifier and transport losses
c.	3 CV WATER	The power of the water cooling system
C2	4 CV AIR	The power of the air ventilation and its heating/cooling system

J.-B. Jeanneret, CLIC-note-990 (2013)


Completeness: lower level(s)

Costing Tool v 0.12.5 PBS 380 GeV PP 4 X 6 1. Main Beam Production →

| i | 1.1.8. Bunching System e- for e+ X 🍯 1.1.13. n.a. ■ □ □ 1.1.14. Spin Rotator e- before PDR X 6 1.1.14.1. RF System X 6 1.1.14.2. RF Powering System X 6 1.1.14.3. Vacuum System X 6 1.1.14.4. Magnet Powering System X 6 1.1.14.5. Magnet System X 6 1.1.14.6. Cooling System X 6 1.1.14.7. Beam Instrumentation System X 6 1.1.14.8. Supporting System X 6 1.1.14.9. n.a. X 🍯 1.1.14.10. n.a.

On the lower level(s), one have to check if all the items from CLIC cost PBS are included in Power model

And what is actually included for each item

Consistency

- Use Costing tool PBS for power estimate. This way, the power estimate as complete as the Cost PBS
- **Furthermore**, for consistency integrate power estimate into the Costing tool
 - This will provide consistency (single PBS, the changes are "automatically" propagated to power)
 - In addition, Operation cost can be estimated in the Costing tool
- We are looking into the possibility to integrate power consumption into the costing tool.

How it may look like: power parameter box

Power input PBS item Power output

- Electrical
- RF
- Beam(s)
- Heat Water
- Heat Air

- Electrical
- RF
- Beam(s)
- Heat Water
- Heat Air

- For each PBS item in addition to cost there will be a box with the following parameters
- There will/may be several boxes each corresponding to different operating mode:
 - Nominal
 - Stand by (waiting for the beam)
 - Stop
- For a given operating mode box the operating mode parameters (accelerating gradient, beam current(s), etc) are the same for all PBS items

How it may look like: power calculator

- Operating mode 1 x number of day per year = MODE 1 MWh
- Operating mode 2 x number of day per year = MODE 2 MWh
- Operating mode 3 x number of day per year = MODE 3 MWh
-
- Total = total MWh per year

Work in progress

- Power box implementation
- How many operating modes?
- Can number of modes be dynamic or only static?
- Connections between different PBS items in terms of power to be defined
- •
- How fast this can be implemented in Costing tool?

Summary and outlook

- The work on updating power consumption for CLIC is in progress
- The main focus is the CLIC 380 GeV two beam baseline
- Then, it can/will be extended to second and the third stages as well as to the klystron-based CLIC
- Cost PBS will be used to ensure completeness of the inventory of the items
- Feasibility of integration of power consumption into the Costing tool is under investigation together with Pablo and Benoit

P.S.: Feedback form Pablo and Benoit (30/11/2017)

- The changes we discussed together on Tuesday are not trivial to implement on our side.
- Given that you need these changes ready in less 3 months from now, we think it is not realistic on our side to be able to deliver these changes on time.

•

- Therefore, what we recommend is that:
- You download the PBS to an Excel file from the Costing tool.
- You start entering the data you're collecting from the domain experts in your Excel file.
- If needed, we can implement a custom report listing all the changes applied to the PBS between 2 dates.
 - This way, you'll be able to add missing nodes to your Excel file, add extra nodes, etc. and make sure you're staying synchronized with the official PBS.