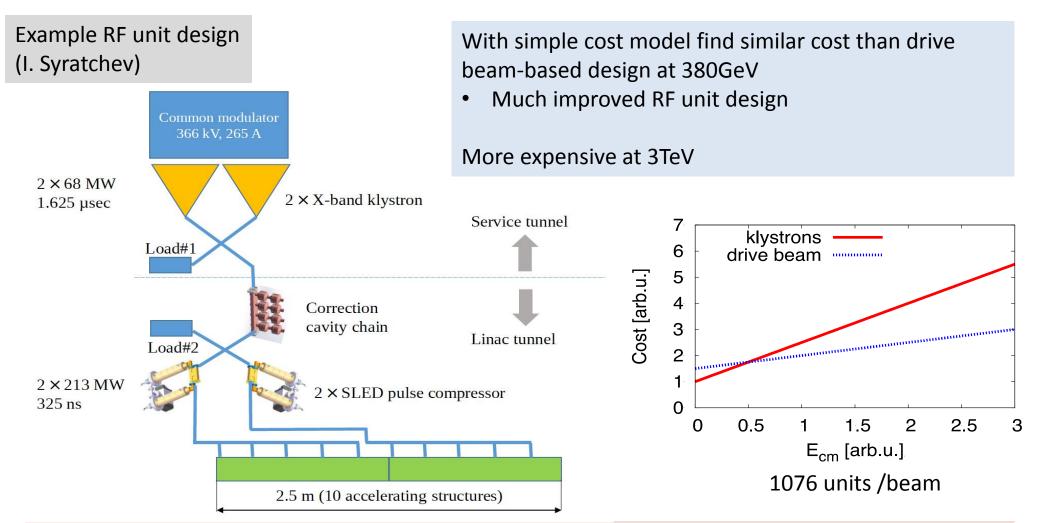

A Superconducting Solenoid applicable for X-band Klystrons

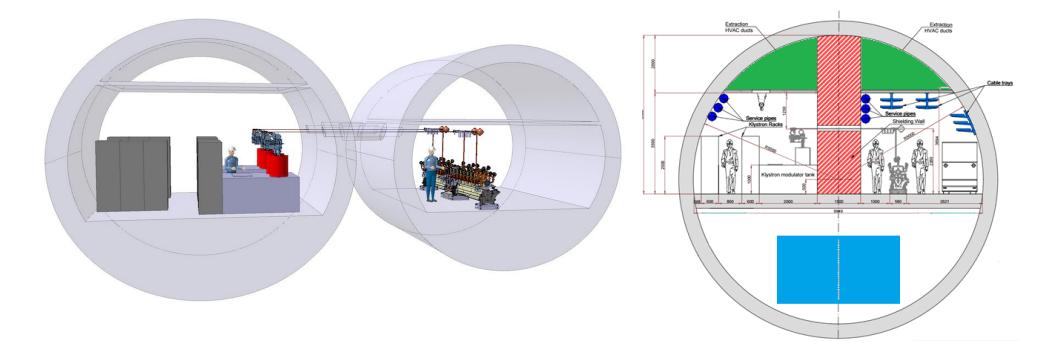
Akira Yamamoto (KEK and CERN)

To be presented at the 7th CLIC-CEIS Working Group 2017-12-01

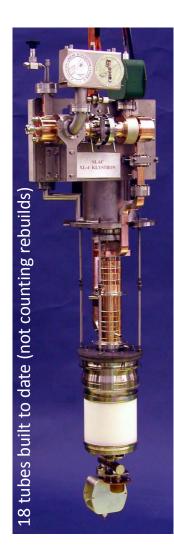

CLIC Staging Scenario being Studied

Background and Objectives

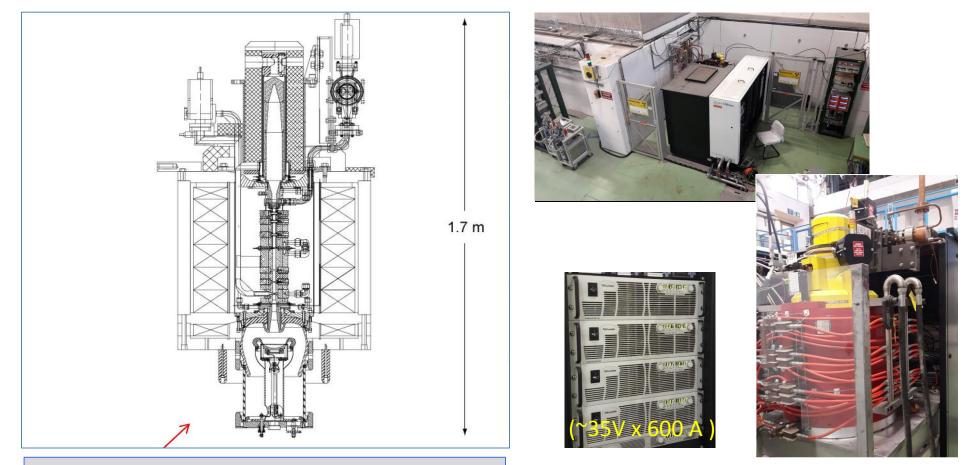
- The CLIC-380 staging scenario is being studied at CERN, and the Xband (12 GHz) klystron-based accelerating scheme may be a costeffective option.
- The klystron requires a solenoid magnet field for beam focusing with
 Bc = ~ 0.6 T in a bore-diameter of 0.48 m
- A Cu-based solenoid magnet, currently used, is consuming
 AC-plug power of ~20 kW per Klystron,
- The superconducting magnet option will result in
 - Total AC-plug power saving of > ~80 MW for ~4,500 klystron in CLIC-380.


Klystron-based First Stage (380 GeV)

The pulse compressor used for parameter determination in the Baseline Report has been still a previous version But used updated model


A. Yamamoto -171201

380 GeV Klystron Tunnel View


4,482 Klystron strings (2,241 pairs) required

X-band klystrons (industrialized)

Output Power (MM)	60		(t)00 ms.)	Klystron XL4 series		
	80	XL4-2 (1.5 microsec) XL4-1 (1.5 microsec.) XL4-1 (1.2 microsec.)	µPerveance	1.2		
100			Peak Cathode loading Magnetic field	12.8 A/cm ² 0.47 T		
			Beam areal compression	125:1		
			Cathode Diameter	71.4 mm		
59 MW 418 kV, 324 A (μK=1.2) Efficiency 0.436			RF Pulse width	1.5µs		
			Peak Output Power	50 MW		
			Beam Current	350 A		
	CLIC'k klystron:		Beam Voltage	440 KV		

Cross Section and Photos of X-band Klystron at CERN

F. Peauger *et al.*; A 12 GHz RF POWER SOURCE FOR THE CLIC STUDY; Proceedings of IPAC'10

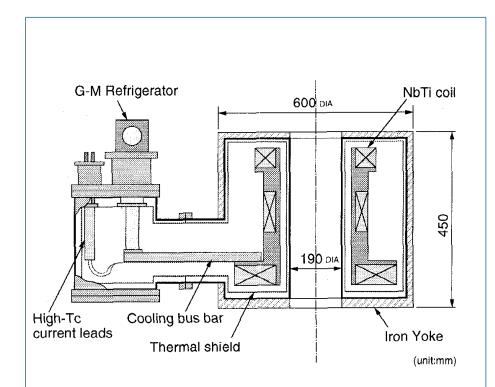
Cu solenoid: Power Consumption: ~ 20 kW

A reference

Cryogen Free Conduction Cooled NbTi Superconducting Magnet for a X-band Klystron

S. Yokoyama, T. Minato, Y. Imai, T. Inaguchi T. H. Kim, T. Umemura Mitsubishi Electric Corp., Tsukaguchi-Honmachi, Amagasaki, Hyogo, 661 Japan

T. Ogitsu, H. Mizuno National Laboratory for High Energy Physics,Oho,Tsukuba,Ibaragi,305 Japan



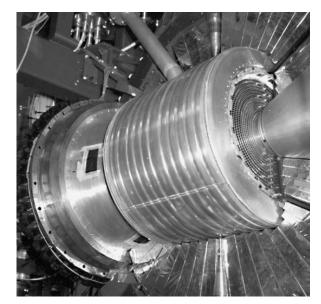
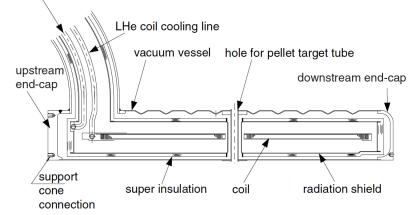

Fig. 1. Schematic structure of the conduction cooled superconducting magnet for the X-band klystron.

Table 1. Main parameters of the magnet.


2633

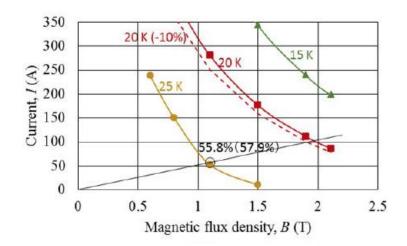
neter 250 neter 400 280 0.7 17.6 36
neter 400 280 0.7 17.6
280 0.7 17.6
0.7 17.6
17.6
36
5.6
Nb-Ti/Cu
4.5
Bi ₂ Sr ₂ Ca ₂ Cu ₃ O ₈
thickness 1, length 200
RP(EL-GEM)
thickness 2, length 250
Gifford-McMahon cycle
1.5Er1.5Ru
e 30 W at 40 K
ge 1.1 Wat 6 K
1

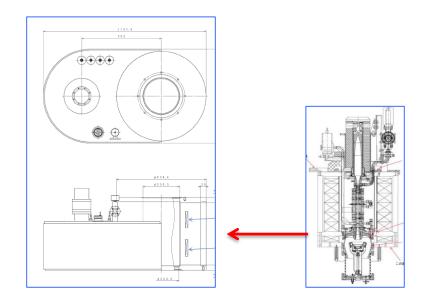
A NbTi SC Solenoid developed for WASA Experiment in cooperation with KEK-Uppsala, in 1990's

GHe radiation shield cooling line

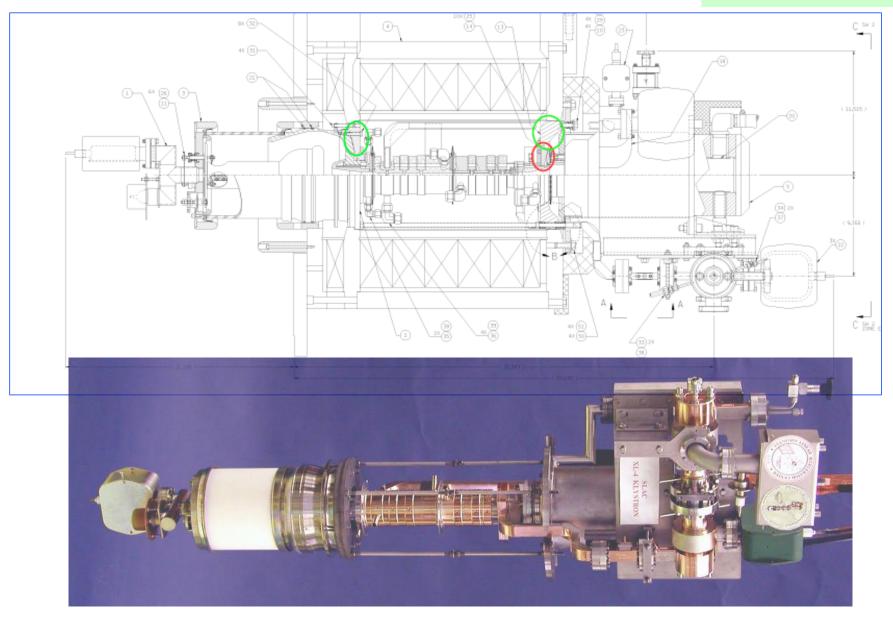
Superconducting Wire			
Superconductor	NbTi in Cu-matrix		
Stabilizer	aluminium (RRR $= 1500$)		
Outer dimensions (excl. insulation)	$1.2~\mathrm{mm} imes 1.8~\mathrm{mm}$		
Insulation	Formvar (0.05 mm)		
$I_{critical}$ at 2 T, 4.2 K	1415 A		
Yield strength $\sigma_{0.2}$ at 77 K	$117{ imes}10^6~{ m Pa}$		

Coil

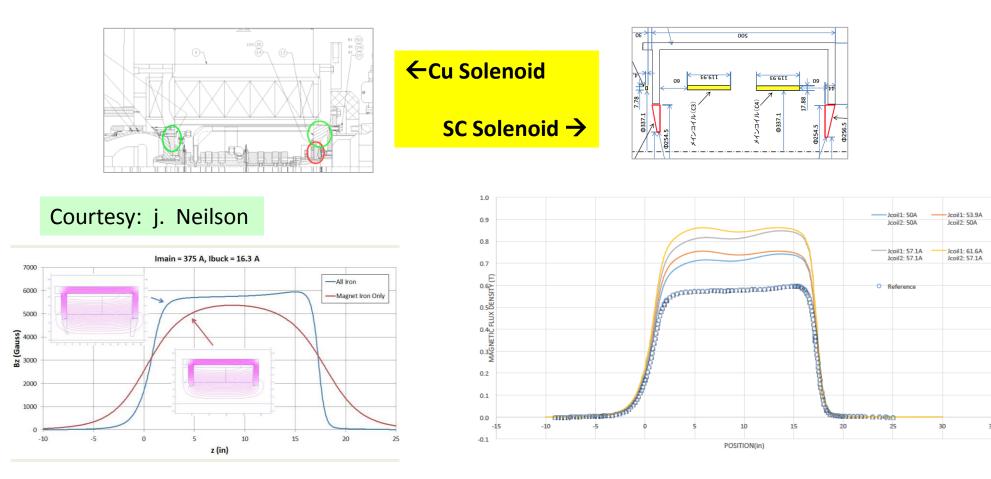

Coll			
Radius	276.8 - 288.8 mm		
Length	$465 \mathrm{~mm}$		
Gap between windings	40 mm		
Winding length on each side of the gap	190 mm		
Cold mass	22.9 kg		
Maximum central magnetic field	1.3 T		
Maximum operational current	903 A		
Energy to mass ratio	6 kJ/kg		
Inductance	0.30 H		
Cooling technique	thermo-syphon		
Coil Cryostat			
Radius	$245-325~\mathrm{mm}$		
Length	$555 \mathrm{mm}$		
Hole for the pellet target tube	$10{ imes}25~{ m mm}~{ m (oval)}$		


Possible Choices among SC Materials

	Material	Т _с [K]	B _{c1} (0) [T]	B _{sh} (0) [T]	B _c (0) [T]	В _{с2} (0) [T]	Pen. depth λ(0) [nm]	
	Nb	9.2	0.18	0.21	0.25	0.28	40	
	NbTi	9.2 ~9.5	0.067			11.5 ~ 14	60	
	NbN	17.3	(0.02)				150-200	
	Nb₃Sn	18.3	(0.05)	0.43	0.54	28 ~30	80	
	MgB ₂	39	(0.03)	0.31	0.43	39	140	
Γ	YBa ₂ Cu ₃ O ₇ (REBCO family)	92	0.01		1.4	100	150	20um Cu - 30 rm Homo- 10 rm IBAC
В	Bi ₂ Sr ₂ Ca ₁ Cu ₂ O ₈ (BSCCO-2212)	94	0.025		-	>100/30	1800	Zom Fu
Bi	i ₂ Sr ₂ Ca ₂ Cu ₃ O ₁₀ (BSCCO-2223)	110	0.0135			>100/30	2000	
	Note Important for:		RF			Magnet		

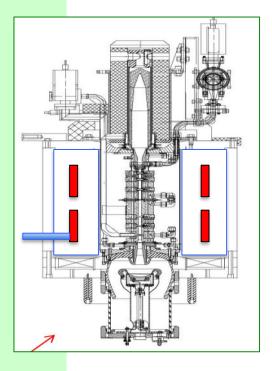

A SC Solenoid Magnet proposed

Design Parameters				
Superconductor (T-operation)	MgB ₂ (@ 20 K)			
Current	50 A			
Central field	0.7 T			
Stored energy	~ 10 kJ			
Cryo-cooler applied (SHI: CH-204S 10K/Zephyr)	6.7 W @ 20 K 13.5 W @ 80 K			
AC Power Consumption	~ 3 kW (1,5 kW/Klystron in case of a pair)			



Courtesy: jeff Neilson

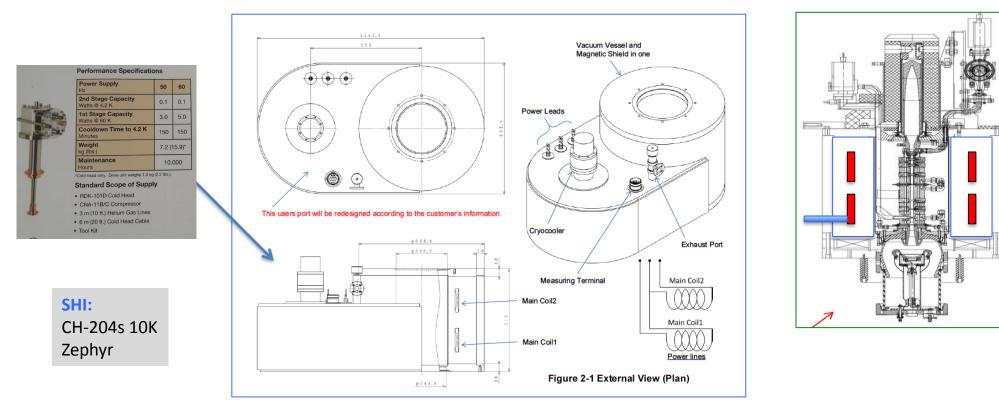
Axial Magnetic Field Profile Comparison of Cu and SC Solenoids


A Prototype to be Developed

Objective

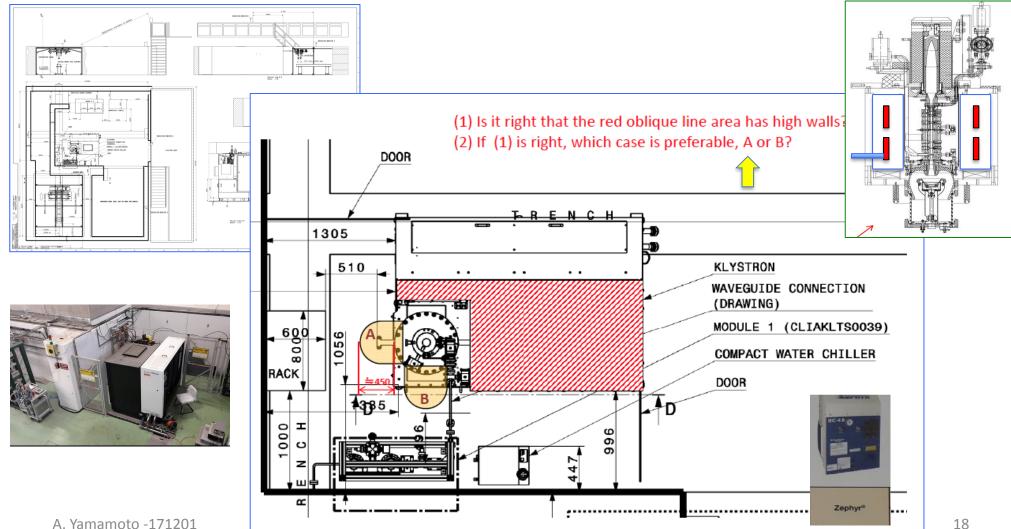
• Demonstrate SC-mag technology to be applicable for X-band Klystron

Prototype Magnet:


- A prototype solenoid using MgB₂
 - B = > 0.7 T (central field), Coil size: ~ 0.35 m (dia.)
 - Iron Yoke size: interface compatible
 - Operational Temp. 20 K, cooled by using a cryo-cooler
 - AC-plug power saving to be demonstrated:
 - \rightarrow < 3 kW / Klystron (corresponding < 1.5 KW/ a pair)
- A goal with operation of the magnet with an existing Klystron **Future**:
- Pairing the solenoid, for reducing # CLs
- HTS solenoid (when it will become cost-effective),
- Cooling by using a dedicated cryogenics for a series of Klystron Solenoids to reach < 1 kW AC-plug power /Klystron (< 1/10 of AC power)
- \rightarrow Saving expected : ~ (20-1) kW x 4,500 = > ~ 80 MW in CLIC-staging-380.

Tasks of KEK

- Design and construct a prototype superconducting magnet compatible with the 50 MW klystrons used in the CERN highgradient test facilities and providing a significant energy saving compared to the existing normal-conducting solenoid;
- Provide experimental evaluation of the magnet performance and characteristics prior to the system test with the klystron;
- Deliver the prototype klystron to CERN; and
- Undertake further design study for the advanced superconducting magnet design for applications in future accelerator and other programmes.


Configuration of the Prototype Klystron SC Solenoid

Tasks of CERN

- Provide the necessary technical information, requirements and specifications for the focusing solenoid of the 50 MW X-band klystron currently in use at CERN in the CLIC high-gradient test facility;
- Support the research activities at KEK;
- Install the superconducting magnet prototype coupled with klystron in one of the CLIC high-gradient test stands and provide an operational evaluation; and
- Provide measurements of crucial parameters such as klystron stability and system energy consumption.

A Possible Setup w/ the Klystron at the **CERN RF experimental hall**

