

MEDICIS-Promed : radioisotopes production

Specialized Training - KU Leuven 5 sept 2017

Jean-Michel Geets; IBA RadioPharma Product Mngr

© 2017 IBA SA

TOTAL 45 min 5 sept 11 am

- About IBA
- Topics
 - Target selection
 - Target design
 - Energy range
 - Cyclotron : proton beam production
 - Mo99 solution with electron beam
- Our affiliates come from a wide background with some students familiar with the production of radioisotopes but others rather invested in their end use. Please make sure you adapt your content to reach every member of the audience.
- The event will also be open to outside participants and many students from different background have already express interest.

Once upon a time... in a Belgium physics research center

- A young researcher who had imagined a new cyclotron...
- Producing **5x more output**
- Consuming **3x less energy** than any existing cyclotrons...
- A revolutionary cyclotron *Cyclone 30* was invented

IBA is a high-technology medical company with 4 BU's

RADIOPHARM A SOLUTIONS

INDUSTRIAL SOLUTIONS

DOSIMETRY

Cyclotron ?

- Magnet
 - Coils
 - Yoke / iron
- RF
- Ion source (H-)

¹⁸O (p,n)¹⁸F

A STORY OF CYCLOTRON INNOVATIONS

1990

VECTIO[®] BEAM

FOR R&D

TRANSPORT LINE

2002

NIRTA[®] SOLID TARGET TO GIVE ACCESS TO NEW ISOTOPES EP1570493

2006

SHIELDED TARGET DOORS SHIELDING CLOSURE FOR EASY DECOMMISIONING EP200.199

2011

NIRTA[®] FLUOR CONICAL TARGET FOR REDUCED ENRICHED WATER USE w0 2012/0ss970

1985

DEEP VALLEY CYCLOTRON 5 X MORE OUTPUT, 3 X LESS ENERGY EP022786

2000

NIOBIUM NIRTA® FLUOR TARGET FOR BETTER ISOTOPE QUALITY EP1716376

2003

DUAL BEAM REGULATION FOR DOUBLED PRODUCTION EP1686082

2005

HIGH CURRENT MACHINE 150µA FOR INCREASED PRODUCTION CAPACITY 2008 TWIN PROTON SOURCES

TWIN PROTON SOURCES TO MAXIMIZE UPTIME EP2198073 ZEPHIROS[®] CYCLOTRON CONTROL SYSTEM FOR EASE OF USE EP2581914

2012

EP18169489, EP18169490 EP18169494, EP18169497 EP18169494, EP18169497

Towards High beam current

1990

TRANSPORT LINE

FOR R&D

80 µA

2002

NIRTA[®] SOLID TARGET TO GIVE ACCESS TO NEW ISOTOPES EP1670493

2006

SHIELDED TARGET DOORS SHIELDING CLOSURE FOR EASY DECOMMISIONING EP200.199

2011

NIRTA[®] FLUOR CONICAL TARGET FOR REDUCED ENRICHED WATER USE WO 2012/055970 2016 CYCLONE® KIUBE

1985 DEEP VALLEY CYCLOTRON 5X MORE OUTPUT, 3X LESS ENERGY

EPO22786

2000

NIOBIUM NIRTA® FLUOR TARGET FOR BETTER ISOTOPE QUALITY EP1718876

2003

DUAL BEAM REGULATION FOR DOUBLED PRODUCTION EP1586082

2005

HIGH CURRENT MACHINE 150µA FOR INCREASED PRODUCTION CAPACITY TWIN PROTON SOURCES TO MAXIMIZE UPTIME EP2196073

2008

ZEPHIROS[®] CYCLOTRON CONTROL SYSTEM FOR EASE OF USE EP258/914

2012

300 µA

EP16171282

100 µA

Radioisotope production, Target design, ... & the right energy

ha

Target & production / energy : exemple of ¹⁸F

- From cross section to thick target yield
 - Physical properties & constraints
 - Chemicals properties & constraints
 - Contaminants, carrier added or not (nca)

¹⁸O(p,n)¹⁸F Saturation Yield

C.Gonzalez, Cyclotope & MD Anderson CC, Texas

New Nirta® Conical target performances

Data 18 MeV - need of HIGH CAPACITY 18F- : price erosion of FDG dose.

	Conical 5	Conical 8	Conical 12	Conical 16
Filling volume	1,8ml	~2.3 ml	~2.7 ml	~4 ml
Current	45 µA	70 µA	100 µA	130 µA
Average yield @ sat	230 mCi/µA 8.5 GBq/µA	230 mCi/µA 8.5 GBq/µA	230 mCi/µA 8.5 GBq/µA	230 mCi/µA 8.5 GBq/µA
Activity output (2h)	5 Ci 185 GBq	8 Ci 296 GBq	12 Ci 444 GBq	16 Ci 592 GBq
Target pressure	~40 bar	~30 bar	~30 bar	~30 bar

BASE MODULE

- High-activity tolerance
- High yield 60% FDG
- Multi-tracer

MULTI-RUN

- High-activity tolerance
- High yield
- Multi-run of FDG & multi-tracers

FLEXIBILITY

- High-activity tolerance
- High yield
- Fixed IFP

One way of obtaining Ga-68 for NET imaging

Gallium DOTATATE PET scan

Post-processing & Labelling on the Synthera® platform

Ga-68 Nirta® target system

in collaboration with the University of Coimbra

IBA patent application : EP15170854.2

Similar to ¹⁸F-FDG production Liquid transfer & cartridge purification

⁶⁸Zn (p,n) ⁶⁸Ga

F-18 FDG PET scan

Gallium-68 DOTATATE PET/CT

F-18 FDG PET scan of a patient with Neurendocrinetumour did not reveal any abnormality. However, Gallium-68 DOTATATE PET scan demonstrates tumour in the left lung.

Mixed reactions in one target.. ¹⁰⁰Mo (p,2n)Tc^{99m}

A. Celler, X. Hou, F. Bénard, T. Ruth, Phys. Med. Biol. 2011, 56, 5469

Side reaction (p,n) on Mo ^{9x} => Tc ^{9x}

iba

 \Rightarrow Other chemicals removed by purification

A. Celler, X. Hou, F. Bénard, T. Ruth, Phys. Med. Biol. 2011, 56, 5469

Side reaction (p,2n) on Mo 9x => Tc 9(x-1)

Optimal energy range: 16-19 MeV

Effect of impurities on the patient exposure !

A. Celler, X. Hou, F. Bénard, T. Ruth, Phys. Med. Biol. 2011, 56, 5469

IBA Cyclone® 18 MeV is the right solution for PET

- Access to common PET
 - 18F
 - 11C
 - 13N
 - 150
- Access to new RI on solid target
 - 64Cu,
 - 89Zr,
 - 124I / *123I*
 - Scandium..
 - Tc99m
- new system for Ga68 in 'solutionliquid target'

- TI-203(p,3n) Pb-201
 - & others
- Pb-201 => TI-201
- Need 2 separations
- 'growth time' ~ 24h

FIG. 2.40.1. Excitation function for the ²⁰³Tl(p, 3n)²⁰¹Pb reaction.

Cyclone 30 MeV proton for SPECT & more

- 15-30 MeV variable Energy proton
- Up to 1.2 mA proton (~ 36 kw)
- Mainly for SPECT isotopes (p,2n) & (p,3n)

 Solid target 	Isotope	Energy	Production
30 MeV / 250 μA ~ 7,5 kW	TI-201	28-30 MeV	TI-203 (p,3n) Pb-201 > TI-201
	In-111	25-28 MeV	Cd-112 (p,2n) In-111
	Ga-67	25-28 MeV	Zn-68 (p,2n) Ga-67
 Addition of: 	Ge-68	25-30 MeV	Ga (p,2n) Ge68
 Gas target 	I-123	22-30 MeV	Xe-124 (p,xn) Cs-123 > I-123

Production of ¹²³I : **IBA target + chemistry module**

- Gaseous ¹²⁴Xe target for 30 MeV cyclotrons (Cyclone 30)
- High current targetry
- ¹²⁴Xe safety and recovery system

Solid target process and constraints

NUKLEONIKA 2011;56(4):283-289 & IAEA TRS 465

Solid target process and constraints

iba

- Adherence to carrier up to T°irr
- Smooth & dense (no dentrites, no occlusions)
- Stress free & homogenous +/-5%
- No bath additives @ interface

No toxic (CN-)

- **Time controlled layer thickness**
- **No post process (mechanical, thermal)**

IAEA TRS 432 – cyclotron solid target / Nukleonika 2010 / Rad Chem 2010

Solid target : (1/2) effect of beam optics on TeO₂

- Irradiation of a glassy matrix of TeO₂ and Al₂O₃ melted in a Pt disk
- Beam strike area dia 12 mm
- Up to $40 \mu A 13 MeV$ (after degrador)

Solid target : (2/2) effect of beam optics on TeO₂

Inhomogeneous but acceptable irradiation

At the physical limits

Thermally damaged target

Solid target & beam line – target vault Need to control the beam on target

iba

Development of 68Ge production on 30 MeV cyclotron

high melting point Ga-Ni alloy & Separation chemistry

Preferred production route ^{nat}Ga(p,2n)⁶⁸Ge (⁶⁹Ga: 60.1%)

Vrije Universiteit Brussel

Ref: AccApp, Brugge 2013; 68Ge production (Adam Rebeles) & EUChemMS; 68Ge excitation curve and yield (Hermanne)

Enriched material PLATING 99% eff.

Enriched material RECOVERY 90%

Protect, Enhance, and Save Lives

Shielding of chemistry modules

- Module dimensions & access & process (acid coating)
- Manipulator + shield thickness + utilities

Extended family: Cyclone 30 XP (now in Julich, Germany)

- Cyclone 15- 30 MeV proton + 15 MeV deuteron
- Addition: 30 MeV alpha beam (in positive ion)
- Production of ²¹¹At & ⁶⁷Cu for Therapy

EANM 2010, # 7, session P14, Sunday Oct 10, geets et al.

Generators for PET:

⁸²Sr (25d)/ Rb (1.2 min) ⁶⁸Ge (270d) /Ga (68 min)

PROTEC

SAVE LIVES

Sr/Rb : generator from cyclotron (or Linac..)

- ⁸²Sr (25d)/ Rb (1.2 min)
 - ⁸⁵Rb(p,4n) ⁸²Sr 42-65 MeV
 - Avoid (p,3n).. (< 41 MeV, proton energy lost)

lba

Ge/Ga; generator from cyclotron

- ⁶⁸Ge (270d) /⁶⁸Ga (68 min) PET generator
 - Nat Ga(p,x)⁶⁸Ge 18- 50 MeV
 - ⁶⁹Ga(p,2n) ⁶⁸Ge 15- 40 MeV
- Gallium is liquid at ~room temp
 - Specific encapsulated tgt OR GaNi solid

Cyclone®70 P/XP

IBA Cyclone[®] 70 breaks world record performances at ARRONAX in Nantes, France

IBA Cyclotron Solutions reach world record performances for ARRONAX in Nantes, successfully producing 750µA in proton beam intensity with its Cyclone[®] 70 triple particle high energy cyclotron.

Louvain-la-Neuve, November 18, 2010

The primary focus of the 70 MeV Cyclotron will be the commercial manufacture of Strontium-82 to ensure an ample, stable U.S.-based supply of Strontium-82/Rubidium-82 generators for use in the diagnosis of cardiovascular disease. It will also produce a wide variety of other radionuclides for both research and clinical applications.

		MOLECULAR		
Particule	Energy	Current		
Proton	30- 70 MeV (stripper)	750 µA		
Deuteron	15- 35 MeV (stripper)	50 µA		
Alpha	70 MeV (ESD)	70 µAe		
HH+	35 MeV (ESD)	50 µA		

Cyclone 70 & interesting PET generators

• Strontium-82 and Germanium-68 Production at the ARRONAX Facility

(ba

Now converted to Metal Rb

Nuclear Data Sheets 119 (2014) 261-266

Thermal model of rubidium target

Calculated optimal beam position (Calculations performed at INR RAN)

Beam parameters:

σ = 3.1 mm Diameter of beam rotation: 10 mm Shift of beam spot center: 2 mm down

Calculated temperature distribution in Rb-metal (T_{max} =400°C at 200 μ A)

Target parameters:

Liquid (during irradiation) metallic Rubidium Water cooled on all sides Initial design goal 150 uA Actually achieved >200 uA

14 kW of proton beam

Kiselev et al (Zevacor), 13th Topical meeting on Nuclear Applications of Accelerators, Quebec; 2017

HIGH CAPACITY CYCLOTRONS & targets

Cyclone® KIUBE [18 Mev] Proton up to 300 µA Cyclone^e 30 [MeV] Proton, deuteron & alpha up to 1200 µA Cyclone® 70 [MeV] Proton, deuteron & alpha up to 750 µA

PET

PET & SPECT & Ac225, *At211* Ge68 for 0

Sr82 for Sr/Rb generator & SPECT & others

Ga in target

Ge68 for Ge/Ga generator

www.iba-radiopharmasolutions.com

Mo99 PRODUCTION WITH ELECTRON - ACCELERATORS

Slides courtesy of NorthStar, LLC (USA) & IBA INDUSTRIAL

 N_m – atom density of material m E_{th} – threshold energy in m $\Phi_{E0}(E)$ – photon fluence spectrum $\sigma(\gamma, n)$ – cross section

Average bremsstrahlung photon spectra produced with 20- and 35-MeV electron beams in a Mo target compared to the photonuclear cross section of ¹⁰⁰Mo.

The Mo100- Mo99 cycle Need to adress recycling of the target material

RadioGenix Generating System - NorthStar

• High specific activity USP compliant Tc99m from low specific activity Mo99 sources

lha

- Chemistry for Tc99m production is unaffected by Mo99 production route:
 Natural Mo or enriched Mo;
 neutron activated, Mo98(n,g) Mo 99
 photon activated, Mo100(g,n) Mo99
 fission Mo99
 - Keeps Mo99 logistics (T1/2 : 66 h)
 - FDA approval of the new extractor

Copyright 2015 NorthStar Medical Technologies, LLC

• Feasible & reliable

- More than 3MW of beam power installed
- o running 24-7 with >99% availability

- Economical alternative to Linac
 - Half the consumption of a Linac
 - Small footprint
 - Lower maintenance cost

Future is bright for accelerator production ;-)

More output / products on existing PET cyclotrons

- Decreasing price of FDG
- New 18F tracers (& proprietary)
- Instant production of Ga⁶⁸

□ Production of therapeutic radionuclides (At²¹¹, Cu⁶⁷, Ac²²⁵,..)

- New production needs for PET generators
 - Ge/Ga
 - Sr/Rb

□ *Mo* 99 *by electron* – *photonuclear reaction*

https://iba-worldwide.com/

http://aipes-eeig.org/

Jean-Michel GEETS / Sept 2017

geets@iba-group.com

The Mo-Tc crisis – perspectives and future for cyclotron ?

Use of accelerators for direct production of Tc99m

Figure 3.2. Cumulative distribution of radionuclides used in Europe.

NuPECC report 2014

Protect, Enhance, and Save Lives