Analysis Facilities and Use Cases
Next steps after Naples

Oliver Gutsche, Eduardo Rodrigues
Fermilab University of Cincinnati

WLCG GDB Meeting, CERN, 11 April 2018
Summary-ish of session @ Naples Workshop
Session overview

- Workshop = environment for *examples* of new and/or innovative analysis flows techniques and facilities being used/investigated
Explorations around data querying in analysis flows

- Or: what works, what doesn’t, what's needed, what we’re building

- Exploratory work around the following grand picture:
 - All boxes deserve dedicated focus
 - Ex.: functional programming style, Dask for distributed processing

- Several proof-of-concept Python packages developed along the way
HEP analysis pipelines on HPC facilities

● DEEP-EST(*) :
 ○ EU R&D project for Exascale HPC, in design phase
 ○ Explore conventional HEP analysis workflows on HPC infrastructure
 ○ Explore usability of Apache Spark for HEP data analysis

● Some R&D activities:
 ○ Optimising analysis workflows for novel compute/memory/storage capabilities
 ○ Utilising industry tools like Apache Spark: enabled to read ROOT files natively
 ○ Benchmarking with TBs of CMS Open Data
 ○ In some sense: are general purpose solutions viable for HEP data analysis?

(*) Dynamical Exascale Entry Platform - Extreme Scale Technologies
SWAN - service for web-based analysis

- Service integrates experiments/user data and software, and computing resources
- Users can do analysis only with their browser
 - Anywhere, anytime, with no local installation
 - Cloud-based analysis model
- Interface: Jupyter Notebooks on demand
 - Combine code, equations, text and visualisations
 - Most useful for final steps of analysis, teaching, documentation
 - Use personalised docker container instance
 - System can scale to larger resources like Spark clusters
- Developments guided by (heterogeneous) community
- SWAN is first step towards a truly scalable and interactive distributed data analysis environment
LHCb online & high-throughput analysis (flow)

● A reality, in production!

● Boosts up physics reach and allows for otherwise non-doable analyses

● Only saving reconstructed objects (no raw event) in the trigger demands much on online calibration and alignment, hence on a robust and efficient online monitoring of the data quality as well
Data Analysis & Interpretation WG Paper

- In support of Community White Paper
- Cuts across many other WG areas
 - Data preservation, Machine Learning, ...
- Submitted to the arXiv yesterday!

- Time-to-insight (data) is a crucial metric
- Think towards a “smart” data analysis system
- Scope for new ideas of analysis pipelines, collaborating with non-HEP communities

Contents

1 Introduction
2 HEP Analysis Software Ecosystem
3 Analysis Languages
 3.1 Python
 3.2 Declarative Languages
4 Analyzing Data
 4.1 File format and compression algorithms
 4.2 Analysis Facilities
 4.3 Non-event data handling
5 Analysis Models and Future Systems
 5.1 Sequential Ntuple Reduction
 5.2 “Spark”-like Analysis
 5.3 Query-based Analysis
6 Analysis Preservation
7 Analysis Interpretation
8 Analysis Roadmap
 8.1 1-year Time Frame
 8.2 3-year Time Frame
 8.3 5-year Time Frame
Outlook

- We want, and need(!), to foster collaboration and common projects on analysis-related topics
 - Examples of funded efforts exist (e.g., NSF-funded DIANA/HEP project), but need more to make a difference!

- Lots of activities post-CWP but no organisational structure / specific timelines to tackle proposed roadmap …
 … can the HSF facilitate information exchange in the analysis area, Maybe with a dedicated WG?
 - Let us know about funded (and non-funded) efforts

- Links with communities outside HEP are emerging through the tools explored and used - great!
Next steps beyond Naples
“Random” questions from Naples, to keep in mind ...

- Is more contact information needed for projects already discussed to start more collaboration?
- How do we keep the discussion and exchange of information alive?
- What common projects are identified for this area that will advance?
 - Are the right stakeholders already involved? Should other experiments or organisations be contacted?
 - Are any resource needs covered?
- Are there projects that are not currently advancing?
 - What would allow them to do so?
- Links with communities outside HEP
 - Are any established? Are any links needed that we don’t have?
- Are we making best use of community expertise in this area?
 - How best do we advance collaborations that will be of benefit more widely and improve our software and maximise the effectiveness of effort
Further engage with the open-source community?

- For what concerns data analysis, there is much to be learned/used from the non-HEP community
 - Software - huge (Python) scientific software ecosystem
 - Training - lots of conferences/workshops with tutorials and hands-on (see next slides for examples)
 - Exchanges - effectively done via open-source events and contributions to OS software

- Many non-HEP open-source conferences/workshops we should try to have a more “active” presence in (again, see next slide for a few examples)
 - HEP community presence is not overwhelming
 - We do have our own dedicated conferences/workshops, which work very well
 - Ex.: ACAT, CHEP, DS@HEP, ROOT Users
 - But much to be gained with a stronger exchange, building relations & contacts:
 - attend a broader range of events, further invite non-HEP speakers to our events
 - The HSF may help as a “visiting card”
 - Obvious challenge for event participation: financial support ...
Further engage with the open-source community?

Non-HEP open-source SW&C / Statistics / Data Science / Machine Learning Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Site</th>
<th>Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>AnacondaCON</td>
<td>https://anacondacon.io/</td>
<td>Real World Data Science, Anaconda Enterprise Open Source Technology</td>
</tr>
<tr>
<td>JupyterCon</td>
<td>https://conferences.oreilly.com/jupyter/jup-ny</td>
<td>Bring together data scientists, business analysts, researchers, educators, developers, and core Project contributors and tool creators.</td>
</tr>
<tr>
<td>IEEE BigData</td>
<td>https://bigdata.ieee.org/conferences</td>
<td>Around Big Data – analysis, computing, cloud, ...</td>
</tr>
<tr>
<td>PyData</td>
<td>https://pydata.org/</td>
<td>International community of users and developers of data analysis tools to share ideas and learn from each other.</td>
</tr>
<tr>
<td>EuroSciPy</td>
<td>https://www.euroscipy.org/</td>
<td>Cross-disciplinary. Focused on use and development of the Python language in scientific research.</td>
</tr>
<tr>
<td>SciPy</td>
<td>https://conference.scipy.org/</td>
<td>Participants from academic, commercial, and governmental organizations to (1) showcase their latest Scientific Python projects, (2) learn from skilled users and developers, and (3) collaborate on code development.</td>
</tr>
<tr>
<td>Strange Loop</td>
<td>https://www.thestrangeloop.com/</td>
<td>Multi-disciplinary conference bringing together developers and thinkers building tomorrow’s technology in fields such as emerging languages, alternative databases, concurrency, distributed systems, security, and the web.</td>
</tr>
<tr>
<td>Strata Data Conference and other O’Reilly conferences such as AI Conf</td>
<td>https://www.oreilly.com/conferences/</td>
<td></td>
</tr>
</tbody>
</table>
Promoting Python as a 1st-class analysis language

- PyHEP “Python in HEP” workshops
 - Initiative strongly welcomed by HSF

- In longer term will hopefully enable stronger bridges with the Data Science, Machine Learning, SW&C communities
 - E.g. inviting speakers from interesting projects, tools, etc.
 - Hopefully that may result in more of those projects/companies becoming aware and interested in our use cases … they may then invite us too!
CWP roadmap - 1-year time frame (1/2)

- Enable new open-source tools to be plugged in dynamically in the existing ecosystem and mechanisms to dynamically exchange parts of the ecosystem with new components
 - Ongoing projects: e.g. the Scikit-HEP project
 - Work by Giulio Eulisse on initial Apache Arrow TDataSource for ROOT, as starting point to deliver Arrow interoperability to ROOT

- Develop requirements and design a next generation analysis facility concept, incorporating fast caching technologies to explore a query-based analysis approach and open-source cluster management tools
 - See e.g. Jim’s and Viktor’s work presented @ Naples
CWP roadmap - 1-year time frame (2/2)

● Finalise full support of Python in our ecosystem including long-term maintenance
 ○ Need strong commitment and effort from ROOT team
 ○ Would profit from more community engagement
 ○ See initiative of PyHEP workshop series

● Evolve policies to minimise this effort by retiring less used components from the integration and validation efforts

● Establish a schema for the “analysis database”
 ○ Obvious link to groups on Data Preservation & Interpretation

● Interpretation Gateway: conceptualisation integrating the analysis facility, analysis preservation infrastructure, data repositories, and recasting tools

Note: the WG paper contains R&D items on the 3- and 5-year time frame, but not so important to list then here at this stage (many are follow-ups and finalisations of the above)
In short

● Lots of activities post-CWP and many people involved across the various experiments
 ○ We need to keep these activities alive, “connected” and, hopefully, focused, with an effective communication across experiments in particular

● Challenging to keep a broad overview of what’s happening
 ○ No organisational structure so far
 ○ This may be a role for the HSF
 ○ Post-CWP WLCG/HSF workshops might be a good thing, say once a year

● Links with communities outside HEP are emerging through the tools explored and used - great!
 ○ Trend is established and we should encourage it further