

Predicting "Min-Bias" and the "Underlying Event" at the LHC

Extrapolations from the Tevatron to RHIC and the LHC

Rick Field

University of Florida

Outline of Talk

- **Studying the formation of the** "underlying event".
- The PYTHIA MPI energy scaling parameter PARP(90).
- The "underlying event" at **STAR**. **Extrapolations to RHIC.**

LHC predictions for the "underlying event" (hard scattering QCD & Drell-Yan).

LHC predictions for "Min-bias".

Summary & Conclusions.

CDF Run 2

CMS at the LHC

QCD Monte-Carlo Models: High Transverse Momentum Jets

- **▶** Start with the perturbative 2-to-2 (or sometimes 2-to-3) parton-parton scatter, and add initial and final-state gluon radiation (in the leading log approximation or modified leading approximation).
- → The "underlying event" consists of the "beam-beam remnants" and articles arising from soft or semi-soft multiple parton interactions (MPI).
- Of course the outgoing colored parton observables receive contributions fron

The "underlying event" is an unavoidable background to most collider observables and having good understand of it leads to more precise collider measurements!

oly "underlying event"

QCD Monte-Carlo Models: Lepton-Pair Production

- **→** Start with the perturbative Drell-Yan muon pair production and add initial-state gluon radiation (in the leading log approximation).
- **→** The "underlying event" consists of the "beam-beam remnants" and from particles arising from soft or semi-soft multiple parton interactions (MPI).
- **→** Of course the outgoing colored partons fragment into hadron "jet" and inevitably "underlying event" observables receive contributions from initial-state radiation.

Proton-AntiProton Collisions at the Tevatron

CERN - August 14, 2009

Particle Densities

Study the charged particles ($p_T > 0.5 \text{ GeV/c}$, $|\eta| < 1$) and form the charged particle density, $dN_{chg}/d\eta d\phi$, and the charged scalar p_T sum density, $dPT_{sum}/d\eta d\phi$.

CDF Run 1 "Min-Bias" Data Charged Particle Density

Shows CDF "Min-Bias" data on the number of charged particles per unit pseudo-rapidity at 630 and 1,800 GeV. There are about 4.2 charged particles per unit η in "Min-Bias" collisions at 1.8 TeV ($|\eta| < 1$, all p_T).

- Convert to charged particle density, $dN_{chg}/d\eta d\phi$, by dividing by 2π . There are about 0.67 charged particles per unit η - ϕ in "Min-Bias" collisions at 1.8 TeV ($|\eta|$ < 1, all p_T).
- There are about 0.25 charged particles per unit η - ϕ in "Min-Bias" collisions at 1.96 TeV ($|\eta| < 1$, $p_T > 0.5$ GeV/c). $< dN_{chg}/d\eta > = 1.6!$

 $\Delta \eta \mathbf{x} \Delta \phi = 1$

 $\Delta \phi =$

CDF Run 1 Min-Bias "Associated" Charged Particle Density

Use the maximum nacharged particle at the the accompanying PTmax than it is to

find a particle in the central region! iated" charged particle density,

n-bias" collisions ($\eta_T > 0.5 \text{ GeV/c}$, $|\eta| < 0.5 \text{ GeV/c}$

dN_{chg}/dηdφ, for charged particles ($p_T > 0.5$ GeV/c, $|\eta| < 1$, not including PTmax) relative to PTmax (rotated to 180°) for "min-bias" events. Also shown is the average charged particle density, dN_{chg}/dηdφ, for "min-bias" events.

Shows the

CDF Run 1 Min-Bias "Associated"

Charged Particle Density

Rapid rise in the particle density in the "transverse"

- \rightarrow Shows the data on the $\Delta \phi$ dependence of the "associated" charged particle density, $dN_{chg}/d\eta d\phi$, for charged particles (p_T > 0.5 GeV/c, $|\eta|$ < 1, not including PTmax) relative to PTmax (rotated to 180°) for "min-bias" events with PTmax > 0.5, 1.0, and 2.0 GeV/c.
- \rightarrow Shows "jet structure" in "min-bias" collisions (i.e. the "birth" of the leading two jets!).

Min-Bias "Associated" Charged Particle Density

Shows the $\Delta \phi$ dependence of the "associated" charged particle density, $dN_{chg}/d\eta d\phi$, for charged particles ($p_T > 0.5$ GeV/c, $|\eta| < 1$, not including PTmax) relative to PTmax (rotated to 180°) for "min-bias" events at 1.96 TeV with PTmax > 0.5, 1.0, 2.0, 5.0, and 10.0 GeV/c from PYTHIA Tune A (generator level).

Shows the "associated" charged particle density in the "toward", "away" and "transverse" regions as a function of PTmax for charged particles ($p_T > 0.5$ GeV/c, $|\eta| < 1$, not including PTmax) for "min-bias" events at 1.96 TeV from PYTHIA Tune A (generator level).

"Transverse" Charged Density

Shows the charged particle density in the "transverse" region for charged particles ($p_T > 0.5$ GeV/c, $|\eta| < 1$) at 1.96 TeV as defined by PTmax, PT(chgjet#1), and PT(jet#1) from PYTHIA Tune A at the particle level (*i.e.* generator level).

Tuning PYTHIA: Multiple Parton Interaction Parameters

Parameter	Default	Description							
PARP(83)	0.5	Double-Gaussian: Fraction of total hadronic matter within PARP(84)							
PARP(84)	0.2	Double-Gaussian: Fraction of the overall hadron radius containing the fraction PARP(83) of the total hadronic matter	Hard Co						
PARP(85)	0.33	Production of the MPI! uces two gluons nearest neighbors.	→						
PARP(86)	0.66	Prole des Affects the amount of uons losed initial-state radiation! sts of ark-antiquation.	→						
PARP(89)	1 Te	Determing reference energy E ₀ .	5						
PARP(82)	.9 GeV/c	The of P_{T0} that regulates the 2-to-2 scring divergence $1/PT^4 \rightarrow 1/(PT^2 + P_{T0}^2)^2$	4						
PARP(90)	0.16	Determines the energy dependence of the cut-off P_{T0} as follows $P_{T0}(E_{cm}) = P_{T0}(E_{cm}/E_0)^{\epsilon}$ with $\epsilon = PARP(90)$	(C)/OB) 3						
PARP(67)	1.0	A scale factor that determines the maximum parton virtuality for space-like showers. The larger the value of PARP(67) the more initial-state radiation.	Refer at 1						

"Transverse" Cones vs "Transverse" Regions

- Sum the P_T of charged particles in two cones of radius 0.7 at the same η as the leading jet but with $|\Delta \Phi| = 90^\circ$.
- → Plot the cone with the maximum and minimum PT_{sum} versus the E_T of the leading (calorimeter) jet.

Energy Dependence of the "Underlying Event"

- Sumthe P_T of charged particles ($p_T > 0.4$ GeV/c) in two cones of radius 0.7 at the same η as the leading jet but with $|\Delta \Phi| = 90^\circ$. Plot the cone with the maximum and minimum PT_{sum} versus the E_T of the leading (calorimeter) jet.
- Note that PYTRIA 6.115 is tuned at 630 GeV with $P_{T0} = 1.4$ GeV and at 1,800 GeV with $P_{T0} = 2.0$ GeV. This implies that a = PARP(90) should be around 0.30 instead of the 0.16 (default).
- For the MIN cone 0.25 GeV/c in radius R = 0.7 implies a PT_{sum} density of $dPT_{sum}/d\eta d\phi = 0.16$ GeV/c and 1.4 GeV/c in the MAX cone implies $dPT_{sum}/d\eta d\phi = 0.91$ GeV/c (average PT_{sum} density of 0.54 GeV/c per unit η - ϕ).

"Transverse" Charged Densities Energy Dependence

MS

PYTHIA 6.2 Tunes

Al	l use	LO	$\alpha_{\rm s}$
vith	Λ=	192	MeV!

UE Parameters

Parameter	Tune AW	Tune DW	Tune D6		
PDF	CTEQ5L	CTEQ5L	CTEQ6L >		
MSTP(81)	1	1	1		
MSTP(82)	4	4	4		
PARP(82)	2.0 GeV	1.9 GeV	1.8 GeV		
PARP(83)	0.5	0.5	0.5		
PARP(84)	0.4	0.4	0.4		
PARP(85)	0.9	1.0	1.0		
PARP(86)	0.95	1.0	1.0		
PARP(89)	1.8 TeV	1.8 TeV	1.8 TeV		
PARP(90)	0.25	0.25	0.25		
PARP(62)	1.25	1.25	1.25		
PARP(64)	0.2	0.2	0.2		
PARP(67)	4.0	2.5	2.5		
MSTP(91)	1	1	1		
PARP(91)	2.1	2.1	2.1		
PARP(93)	15.0	15.0	15.0		

Uses CTEQ6L

Tune A energy dependence! (not the default)

Intrinsic KT

ISR Parameter

Peter's Pythia Tunes WEBsite

Detects Date	Parameter	Type	S0A-Pro	P-0	P-HARD	P-SOFT	P-3	P-NOCR	P-X	P-6	Oct 2008]
Peter's Pyth	MSTP (51)	PDF	7	7	7	7	7	7	20650	10042	
Fabruary 2000 @ D	MSTP(52)	PDF	1	1	1	1	1	1	2	2	
February 2009 © P	-				-	-					framework made with
	MSTP(64)	ISR	2	3	3	2	3	3	3	3	
Navigate these pages by using the menu to the left	PARP(64)	ISR	1.0	1.0	0.25	2.0	1.0	1.0	2.0	1.0	pT-ordered models
become available, and as the available data increase comparison of a small number of tunes to available	MSTP(67)	ISR	2	2	2	2	2	2	2	2	or ordered models
but look for links at the top of each page for compar	PARP (67)	ISR	4.0	1.0	4.0	0.5	1.0	1.0	1.0	1.0	owers. [Mar 2007]
	MSTP (70)	ISR	2	2	0	1	0	2	2	2	Oct 2008]
Apr 2009: Full descriptions and parameters of the "F MPI workshop proceedings)	PARP (62)	ISR.	-	-	1.25		1.25	-		-	201
Dec 2007: Some interesting min-bias distributions for	PARP (81)	ISR				1.5	-			125	oaj
Houches workshop proceedings)	MSTP (72)	ISR	0	1	1	0	2	1	1	1	CTEQ6L1 PDFs. [Feb 2009]
The tunes currently available on the plots are (numb	PARP (71)	FSR	4.0	2.0	4.0	1.0	2.0	2.0	2.0	2.0	1
- 0.000 mm to the control of the con	PARJ (81)	FSR	0.257	0.257	0.3	0.2	0.257	0.257	0.257	0.257	
Tunes using O2-ordered model	PARJ (81)	FSR	0.237	0.237	0.8	0.2	0.237	0.237	0.237	0.237	shower framework, with a
STRUCKERS - ALEXANDER A STRUCK	PARU (62)	rsk	0.0	0.8	0.6	0.8	0.0	V.0	0.0		F, and "colour annealing" color
 100: A: Rick Field's Tune A to Tevatron Underl shower models, with a double-gaussian matter 	MSTP(81)	UE	21	21	21	21	21	21	21	21	er than that of Tune A. [Apr
near-maximal color correlations. [Oct 2002]	PARP(82)	UE	1.85	2.0	2.3	1.9	2.2	1.95	2.2	1.95	VO 50 /// SUDDIES 12 2000
103: DW: Rick Field's Tune DW to Tevatron Ur	PARP (89)	UE	1800	1800	1800	1800	1800	1800	1800	1800	atron, but which uses the Tune
to Tune A, but has 2 GeV of primordial kT and	PARP (90)	UE	0.25	0.26	0.30	0.24	0.32	0.24	0.23	0.22	
initial-state radiation (i.e., more ISR radiation).	MSTP (82)	UE	5	- 5	5	. 5	5	5	5	- 5	nections. Gives less good
correlations, [Apr 2006]	PARP (83)	UE	1.6	1.7	1.7	1.5	1.7	1.8	1.7	1.7	***
 104: DWT: Variant of DW using the Pythia 6.2 	MSTP(88)	BR	0	0	0	0	0	0	0	0	vers and new UE framework.
agreement with Tevatron energy scaling quant		BR	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	quantities.
 106: ATLAS-DC2 ("Rome"): first ATLAS tune of 	PARP(79)	5-3-7-5 C	507000	100000000000000000000000000000000000000	14.00	00.000	510550	500000		7.600	nsive retune of the
framework. Does not give very good agreemen	PARP(80)	BR	0.01	0.05	0.01	0.05	0.03	0.01	0.05	0.05	ool, hence the name). [Oct
 107: A-CR: variant of Tune A using the Pythia 	MSTP(91)	BR	1	1	1	1	1	1	1	1	
new "color annealing" color reconnection mode	PARP(91)	BR	2.0	2.0	1.0	2.0	1.5	2.0	2.0	2.0	2008]
an example of strong color reconnections. [Ma	PARP (93)	BR	10.0	10.0	10.0	10.0	10,0	10,0	10.0	10.0	
• 108: D6: Rick Field's Tune D6 to Tevatron data	MSTP (95)	CR	6	6	6	6	6	6	6	6	ia 0. [Feb 2009]
 110: A-Pro: Tune A with LEP tune from Profes 	PARP (78)	CR	0.2	0.33	0.37	0.15	0.35	0.0	0.33	0.33	
	PARP (77)	CR	0.0	0.9	0.4	0.5	0.6	0.0	0.9	0.9	a 0. [Feb 2009]
 113: DW-Pro: Tune DW with LEP tune from Programmer 	MORTICAL	HAD							-		balance and different collider
 114: DWT-Pro: Tune DWT with LEP tune from 	MSTJ(11)	HAD	5	5	5	5	5	5	5	0.212	
 116: ATLAS-DC2-Pro: ATLAS-DC2 with LEP t 	PARJ(21)	HAD	0.313	0.313	0.34	0.28	0.313	0.313	0.313	0.313	2009]
- 1.5. ATENO-DOZ-110. ATENO-DOZ WINTEEP U	PARJ(41)	HAD	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	s. [Feb 2009]
	PARJ(4:				he Perugi:				1.2		- 100 August 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -
	PARJ (46)	HAD	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	. [Feb 2009]
	PARJ(47)	HAD	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	E framework made with

→ http://home.fnal.gov/~skands/leshouches-plots/

⇒ Shows the "associated" charged particle density in the "transverse" regions as a function of PTmax for charged particles ($p_T > 0.5 \text{ GeV/c}$, $|\eta| < 1$, not including PTmax) for "min-bias" events at 0.2 TeV and 14 TeV from PYTHIA Tune DW and Tune DWT at the particle level (i.e. generator level). The STAR data from RHIC favors Tune DW!

⇒ Shows the "associated" charged particle density in the "toward", "away" and "transverse" regions as a function of PTmax for charged particles ($p_T > 0.5 \text{ GeV/c}$, $|\eta| < 1$, not including PTmax) for "min-bias" events at 1.96 TeV and at 0.2 TeV from PYTHIA Tune DW at the particle level (i.e. generator level).

⇒ Shows the "associated" charged particle density in the "toward", "away" and "transverse" regions as a function of PTmax for charged particles ($p_T > 0.5 \text{ GeV/c}$, $|\eta| < 1$, not including PTmax) for "min-bias" events at 1.96 TeV and at 14 TeV from PYTHIA Tune DW at the particle level (i.e. generator level).

Min-Bias "Associated" Charged Particle Density

Shows the "associated" charged particle density in the "transverse" region as a function of PTmax for charged particles (p_T > 0.5 GeV/c, |η| < 1, not including PTmax) for "min-bias" events at 0.2 TeV, 1.96 TeV and 14 TeV predicted by PYTHIA Tune DW at the particle level (i.e. generator level).</p>

The "Underlying Event" at STAR

RHIC

Conclusions

- I. Hadron Collisions at RHIC take place at an order of magnitude smaller √s than the Tevatron. Nevertheless, jets are observed and reconstructed down to pT=5 GeV and are well described by pQCD
- Comparisons between several jetfinders reveal consistent results
- III. Interest in the Underlying Event at RHIC Kinematics is driven by the need for jet energy scale corrections as well as pure physics interests (see talks by M. Lisa and H. Caines)
- IV. UE at RHIC appears to be independent of jet pT and decoupled from hard interaction
- CDF Tune A provides an excellent description of the UE at √s =200 GeV (thanks Rick!)
- At STAR and com

UK

- VI. Underlying Event distributions in general smaller than those at CDF. Tower & Track Multiplicities are the exception, but this may be due to the 0.2 (STAR) versus 0.5 GeV (CDF) pT/Et cut-off.
- VII. For a cone jet with R=0.7 UE contributes 0.5-0.9 GeV.
- VIII. Comparison of Leading Jet and Back-to-Back distributions indicate that large angle radiation contributions are small at RHIC energies.

2 GeV)

The "Underlying Event" at STAR

ightharpoonup Data on the charged particle scalar p_T sum density, dPT/dηdφ, as a function of the leading jet p_T for the "toward", "away", and "transverse" regions compared with PYTHIA Tune A.

The Drell-Yan Cross Section

→ Shows the Drell-Yan Lepton-Pair (μ+μ-) cross section, dσ/dM, at the 1.96 TeV (Tevatron Run 2) and at 14 TeV (LHC) versus the lepton-pair invariant mass from PYTHIA Tune AW.

Yan Lepton-Pair $(\mu^+\mu^-)$ cross section, $d\sigma/dM$, versus the lepton-pair invariant mass from PYTHIA Tune AW.

Drell-Yan Production Tevatron vs LHC

Z-Boson: "Towards" Region

PY ATLAS PY Tune DWT **PY Tune DW** M(pair) < 110 GeV Particles (|η|<1.0, PT>0.5 GeV/c) 100 125 150 (GeV/c)

→ Data at 1.96 TeV on the density of charged Boson" events as a function of $P_T(Z)$ for the S320, and Tune P329 at the particle level (*i*

Teva/

 \rightarrow Extrapolations of PYTHIA Tune AW, Tune $\downarrow N$, Tune DWT, Tune S320, and Tune P329, and pyATLAS to

th $p_T > 0.5$ Ge \and $|\eta| < 1$ for "Zh PYTHIA Tune AW, Tune DW, Tune

the LHC.

es, dN/d

ard" region

nerator level

PYTHIA Tune A Min-Bias

"Soft" + "Hard"

Tuned to fit the CDF Run 1 "underlying event"!

Lots of "hard" scattering in "Min-Bias" at the Tevatron! ulate both "hard" and "soft" collision one program.

- The relative amount of ...rd" versus "soft" depends on the cut-off and can be tuned.
- This PYTHIA fit predicts that 12% of all "Min-Bias" events are a result of a hard 2-to-2 parton-parton scattering with $P_T(hard) > 5$ GeV/c $(1\% \text{ with } P_T(hard) > 10$ GeV/c)!

PYTHIA Tune A LHC Min-Bias Predictions

▶ PYTHIA Tune A predicts that 1% of all "Min-Bias" events at 1.8 TeV are a result of a hard 2-to-2 parton-parton scattering with $P_T(hard) > 10$ GeV/c which increases to 12% at 14 TeV!

Charged Particle Density: dN/dη

- Charged particle (all p_T) pseudo-rapidity distribution, dN_{chg}/dηdφ, at 1.96 TeV for inelastic non-diffractive collisions from PYTHIA Tune A, Tune DW, Tune S320, and Tune P324.
- Charged particle (p_T>0.5 GeV/c) pseudorapidity distribution, dN_{chg}/dηdφ, at 1.96 TeV for inelastic non-diffractive collisions from PYTHIA Tune A, Tune DW, Tune S320, and Tune P324.

LHC Predictions

I believe because of the STAR analysis e are now in a position to be some prediction; he LHC!

→ The amount of activity in "m

If the LHC data are not in the range shown here then we learn new (QCD) physics!

→ The amount of activity in the "underlying ev Yan events.

Charged Particle Density: dN/dn

PY Tune DW

14 TeV

sity: dN/dndd

in Drell

Summary & Conclus

However, I believe that the better fits to the LEP fragmentation data at high z will lead to small improvements of Tune A at the Tevatron!

▶ We are making good progress in understanding and modeling the "underlying event". RHIC data at 200 GeV are very important!

The new Pythia p_T ordered tunes (py64 S320 and py64 P329)

are very similar to Tune A, Tune AW, and Tune DW. At present the new tunes do not fit the data better than Tune AW and Tune DW. However, the new tune are theoretically preferred!

- → It is clear now that the default value PARP(90) = 0.16 is not correct and the value should be closer to the Tune A value of 0.25.
- → The new and old PYTHIA tunes are beginning to converge and I believe we are finally in a position to make some legitimate predictions at the LHC!
- → All tunes with the default value PARP(90) = 0.16 are wrong and are overestimating the activity of min-bias and the underlying event at the LHC! This includes all my "T" tunes and the ATLAS tunes!
- Need to measure "Min-Bias" and the "underlying event" at the LHC as soon as possible to see if there is new QCD physics to be learned!

