

Recent Underlying Event studies at the Tevatron

Deepak Kar

IKTP, TU Dresden

14th August 2009: CERN

Results (I): The underlying event observables as a function of the lepton pair p_T

Charged Particle Multiplicity

Charged Particle Multiplicity

TECHNISCHE UNIVERSITÄT

DRESDEN

ĥuñ

Charged Particle Multiplicity (I)

Charged Particle Multiplicity (II)

Deepak Kar

Charged Transverse Momentum Sum (I)

Charged Transverse Momentum Sum (II)

TransMAX, MIN, DIF Regions

Deepak Kar

Charged Transverse Momentum Average

Charged Transverse Momentum Maximum

Deepak Kar

DRESDEN

Results (II): Correlation between mean p_T of the charged particles against the charged particle multiplicity

 $< p_T >$ versus N_{chg} is a measure of the amount of **hard versus soft** processes contributing and it is **sensitive** to the modeling of the multiple-parton interactions.

Mean p_T vs Charged Multiplicity

Large N_{chg} implies high p_T jets (i.e. hard $2\rightarrow 2$ scattering). Without MPI the only way to get large N_{chg} is to have a very hard $2\rightarrow 2$ scattering.

Mean p_T vs Charged Multiplicity $P_{T}(Z) < 10 \text{ GeV/c}$ Average Charged PT versus Nchg 1.4 **CDF Run 2 Preliminary** pyAW data corrected generator level theory Average PT (GeV/c) 8.0 **ATLAS** "Drell-Yan Production" Charged Particles ($|\eta| < 1.0$, PT>0.5 GeV/c) 70 < M(pair) < 110 GeV excluding the lepton-pair PT(Z) < 10 GeV/c0.6 15 0 5 10 20 25 30 35 **Number of Charged Particles**

Multiple-parton interactions provides another mechanism for producing large multiplicities that are harder than the beam-beam remnants, but not as hard as the primary Z +jet hard scattering.

Summary

- > Observed excellent agreement with PYTHIA tune AW predictions.
- Close match with leading jet underlying event results –underlying event models (BBR part) independent of hard scattering event?
- By looking at the correlation between <p_T> and charged multiplicity, we can discriminate between different contributing subprocesses.

Outlook

Outlook

In that's is what LHC is going to be! Potential for analysis with early data!

Experiences from Tevatron would be invaluable.

Correct data back to particle level? Essential if we shift toward automated tuning.

