Precise spectroscopy of muonium hyperfine structure at J-PARC

2018/06/15 SSP2018
Shun SEO (The University of Tokyo)
for MuSEUM collaboration
Outline

1. Introduction
 • About MuSEUM
 • Why do we use muonium?
 • Contribution to other physics topics

2. Experimental setup

3. Zero-field measurement

4. High-field measurement preparation
MuSEUM collaboration

Muonium Spectroscopy Experiment Using Microwave

Collaborators

M. Aoki, D. Tomono

K. Kubo

E. Torikai

H. Inumma

K. Ishida, M. Iwasaki, O. Kamigaito, S. Kanda

H. M. Shimizu

M. Kitaguchi

K. S. Tanaka

D. Kawall

S. Choi
Goal of MuSEUM

- Precise spectroscopy of MuHFS (Muonium Hyperfine Splitting) in zero & high magnetic field
 - Zero field measurement - ongoing
 - High field measurement - in preparation

- World record @LAMPF
 - Δv (ZF) = 4.463 3022 (14) GHz (300 ppb)
 - Δv (HF) = 4.463 302 765 (53) GHz (12 ppb)
 - $\mu_\mu / \mu_p = 3.183 345 13 (39)$ (120 ppb)

- MuSEUM’s Goal: ten-fold improvement for both experiments
Comparison among Hydrogen-like atoms

Hydrogen
- Proton consists of 3 quarks
- Difficult to calculate $\Delta \nu_{\text{th}}$
- $\Delta \nu_{\text{th}} = 1.420\,403\,1 (8) \text{ GHz}$ (560 ppb)
- $\Delta \nu_{\exp} = 1.420\,405\,751\,766\,7 (8) \text{ GHz}$ (0.6 ppt)

Muonium
- Purely-leptonic
- Long lifetime
- $\Delta \nu_{\text{th}} = 4.463\,302\,891 (272) \text{ GHz}$ (63 ppb)
- $\Delta \nu_{\exp} = 4.463\,302\,765 (53) \text{ GHz}$ (12 ppb)

Positronium
- Large recoil effect
- Short lifetime
- $\Delta \nu_{\text{th}} = 203.391\,69 (41) \text{ GHz}$ (2.0 ppm)
- $\Delta \nu_{\exp} = 203.388\,65 (67) \text{ GHz}$ (3.3 ppm)

Motivation:
The most rigorous validation of the bound-state QED

Comparison among Hydrogen-like atoms

<table>
<thead>
<tr>
<th>Hydrogen</th>
<th>Muonium</th>
<th>Positronium</th>
</tr>
</thead>
<tbody>
<tr>
<td>e− ↓ p</td>
<td>e− ↓ μ+</td>
<td>e− ↓ e+</td>
</tr>
</tbody>
</table>
| Proton consists of 3 quarks
→ Difficult to calculate $\Delta\nu_{\text{th}}$
$\Delta\nu_{\text{th}} = 1.420\,403\,1 \pm 8 \text{ GHz} \quad (560 \text{ ppb})$
$\Delta\nu_{\exp} = 1.420\,405\,751\,7667 \pm 8 \text{ GHz} \quad (0.6 \text{ ppt})$ | Purely-leptonic
• Long lifetime
$\Delta\nu_{\text{th}} = 4.463\,302\,891 \pm 272 \text{ GHz} \quad (63 \text{ ppb})$
$\Delta\nu_{\exp} = 4.463\,302\,765 \pm 53 \text{ GHz} \quad (12 \text{ ppb})$ | Large recoil effect
• Short lifetime
$\Delta\nu_{\text{th}} = 203.391\,69(41) \text{ GHz}$
$\Delta\nu_{\exp} = 203.388\,65(67) \text{ GHz}$
$\Delta\nu_{\exp} = 203.391\,69(41) \text{ GHz}$
$\Delta\nu_{\exp} = 203.388\,65(67) \text{ GHz}$ |

muon anomalous magnetic moment (muon g–2) : a_μ

- More than 3σ discrepancy between theory and experiment

\[a_\mu(\text{exp}) - a_\mu(\text{theo}) = 268(63)(43) \times 10^{-11} \text{ (from PDG 2017)} \]

μ_μ/μ_p: essential parameter for muon g-2 measurement

\[a_\mu(\text{exp}) = \frac{(g - 2)_\mu}{2} = \frac{R}{\mu_\mu/\mu_p - R} \]

- R: Planning 140 ppb measurement at J-PARC and Fermilab
- μ_μ/μ_p: 30 ppb ($\Delta\nu$ measurement + the SM calculation)

- 120 ppb in precursor exp. (μ_μ/μ_p measurement)

-> 20 ppb measurement without assuming the SM
Outline

1. Introduction

2. Experimental setup
 - Experiment procedure
 - Apparatus
 - Beamline, RF and gas system, detectors

3. Zero-field measurement

4. High-field measurement preparation
Experiment Procedure

- 100% polarized muon beam (~27 MeV/c)
- Fiber beam monitor
- Gas chamber
- Microwave cavity
- Kr gas
- Magnetic shield (ZF) / Superconducting magnet (HF)
- μ^+
- e^+ counter
Experiment Procedure

Magnetic shield (ZF) / Superconducting magnet (HF)

e^+ counter

gas chamber

microwave cavity

e^- μ^+

Kr gas

fiber beam monitor
Experiment Procedure

Magnetic shield (ZF) / Superconducting magnet (HF)

e^+ counter

gas chamber

microwave cavity

Kr gas

fiber beam monitor

$\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu$

e^+

e^-
Experiment Procedure

Magnetic shield (ZF) / Superconducting magnet (HF)

gas chamber

microwave cavity

Kr gas

fiber beam monitor

e^+ counter

e^-

μ^+

Kr gas
Experiment Procedure

- Magnetic shield (ZF) / Superconducting magnet (HF)
- Gas chamber
- Microwave cavity
- Fiber beam monitor
- $e^+ \text{ counter}$
- Kr gas
Experiment Procedure

- Magnetic shield (ZF) / Superconducting magnet (HF)
- Microwave cavity
- Gas chamber
- Fiber beam monitor
- e^+ counter
Experiment Procedure

Magnetic shield (ZF) / Superconducting magnet (HF)

gas chamber

microwave cavity

Kr gas

fiber beam monitor

$\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu$

e^+ counter
Uncertainties of precursor measurements

- Statistical uncertainty was dominant in both Zero & High field measurements.
 - Zero field: Statistical uncertainty was 300 ppb.
 Systematic uncertainty was claimed to be negligible.
 - High field: Error budget is as below.
 B-field uncertainty was large in systematic uncertainties.

- Uncertainties in High field measurement (values from W. Liu et al., Phys. Rev. Lett. 82, 711 (1999).)
Beam line (J-PARC MLF)

- To obtain large statistics, we use the world highest intensity pulsed muon beam @J-PARC MLF MUSE.
Microwave cavity and RF system

- Make the MuHFS transition with a microwave cavity.
 - ± 1.5 MHz tuning with a piezo positioner
 - RF power in the cavity ~ 2 W
 - Q factor is about 10,000

Microwave cavity and RF system

- Microwave cavity and RF system
- High-field cavity (TM110, TM210)
- Zero-field cavity (TM110)

- length 230 mm
- diameter 81 mm
- piezo positioner

- length 304 mm
- diameter 187 mm
Gas handling system

- **Systematic uncertainty from Kr gas**
 - **Pressure shift** -> monitored by a capacitance gauge
 - Fluctuation \(\sim 0.002 \text{ Pa/min} \)
 - **Impurity effect** -> monitored by a Q-Mass spectrometer online
 - \(\text{O}_2 < 0.4 \text{ ppm} \)
Positron detector

- High rate capability is required (100 M muons/sec/ch at 1MW)
 - Detector property:
 - Segmented (10 mm×10 mm×3 mmt) Scintillator
 - Hamamatsu MPPC (Si photomultiplier)
 - 240 mm×240 mm area, 1152 ch in total

Outline

1. Introduction

2. Experimental setup

3. Zero-field measurement
 • Magnetic shield
 • Result of 1st measurement
 • The latest measurement

4. High-field measurement preparation
Magnetic shield

- Muon’s spin is depolarized by environmental B field
 - Typically 100 µT in the beam area
- **Magnetic shield** (three layers of permalloy): Suppress B-field
 - Measurement with a fluxgate probe
 - B-field < 350 nT

![Magnetic shield and gas chamber](image)

B-field with and without shield (Log Scale)

(▲: without Shield, ●: with Shield)
1st Beam time: 2016 June

- The first muonium hyperfine resonance using pulsed beam was observed!
 - Beam power \(\sim 200 \text{ kW} \)
 - Result of measurement in 8 hours:
 \[
 4.463 \, 292 \, (22) \, \text{GHz} \, (4.9 \, \text{ppm})
 \]
 c.f.) Precursor exp. \(4.663 \, 3022(14) \, \text{GHz} \, (300 \, \text{ppb}) \)
Uncertainty of 1st Beam time

- Statistical uncertainty: **22 kHz** (data taken for 8 hours)
- Systematic uncertainty: **123 Hz**

<table>
<thead>
<tr>
<th>Source</th>
<th>Contribution (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas pressure extrapolation</td>
<td>119</td>
</tr>
<tr>
<td>Gas pressure fluctuation</td>
<td>6</td>
</tr>
<tr>
<td>Microwave power drift</td>
<td>26</td>
</tr>
<tr>
<td>Gas impurity</td>
<td>12</td>
</tr>
<tr>
<td>Magnetic field</td>
<td>0</td>
</tr>
<tr>
<td>Detector pileup</td>
<td>2</td>
</tr>
<tr>
<td>others</td>
<td>9.8</td>
</tr>
<tr>
<td>Total</td>
<td>123</td>
</tr>
</tbody>
</table>

by S. Kanda (RIKEN)
Gas pressure extrapolation

- Frequency shift due to an atomic collision between Mu and Kr
 \[\Delta \nu(P) = (1 + aP + bP^2)\Delta \nu(P = 0) \]
 where \(P \): gas pressure,
 \(a, b \): parameters

- Precursor exp.: Measured with more than 0.8 atm gas

- In the 1st result,
 - Measured with 1 atm gas
 - Extrapolate with 0.8 atm of precursor exp.
Recent upgrades

- To obtain more statistics,
 - **New cavity (TM220 mode) was installed**
 - More muons stop in the cavity
 - Beam power is enhanced to about 400 kW (2018 March)

Upgraded in June 2017

- TM110 Cavity
 - Length: 230 mm
 - Diameter: 81 mm

- TM220 Cavity
 - Length: 300 mm
 - Diameter: 181 mm
The Latest Experiment (2018 Mar & June)

- 2018 March & June: Measured with 0.3, 0.4, 0.55 and 0.7 atm Kr gas
 - Reduce the uncertainty of extrapolation
 - The first time to measure with less than 0.8 atm gas

- Analysis is ongoing
 - We expect a smaller uncertainty than the precursor experiment.

![Image of experiment setup]

![Graph showing resonance with 0.4 atm gas]

Signal \(\frac{[\text{Non-Noff}]}{\text{Noff}} \)

Resonance with 0.4 atm gas - 4,463,302 kHz

Very Preliminary
Outline

1. Introduction

2. Experimental setup

3. Zero-field measurements

4. High-field measurement preparation
 • Shimming B-field
 • Development of NMR probe
Uncertainties of LAMPF experiment

In the precursor exp., **statistical** and **B-field uniformity** uncertainties were dominant.

- We reduce statistical uncertainty with the intense pulsed beam
- Need to improve B-field!

Uncertainties in High-field measurement

Reduction of the B-field uncertainty

- Stability and homogeneity of B-field
 - Stability ~ 3 ppb/h
 - Homogeneity: shimmed

- Precise field probes
 - Fixed probe for stability
 - Mapping probe for homogeneity
 - Absolute probe for calibration of other probes
Shimming B-field

- Shimming with iron plates (5 & 25 µm thickness) in 24 pockets × 24 trays = 576 pockets inside the magnet
- Position and volume of plates were determined by Singular Value Decomposition (SVD) method
- Improved **homogeneity to 0.80 ppm** of 1.7 T in target area (mapped with single NMR probe)
NMR probe

- **Nuclear Magnetic Resonance (NMR) probe**
 - The most precise method for $B > 1$ T
 - Determine B-field by observing RF absorption of the proton in pure water

- **Continuous Wave NMR (CW-NMR) probe**
 - Input constant RF
 - Sweep the B-field by using modulation coils

\[\Delta E = \nu = \gamma B \]
Test of CW-NMR probe and Cross calibration

- Development of CW-NMR probe
 - Convert analog signal to digital (ppm -> ppb precision)
 - Select materials to cancel the susceptibility each other
 - $61,717,644.5 \pm 0.9$ Hz (15 ppb) @ 1.45 T

- 1st Cross calibration with a NMR probe of Fermilab g-2 group (2017 Mar)
 - Fermilab probe: another NMR method (Pulse NMR)
 - 20 ppb agreement at blind analysis between two probes (preliminary)
Systematic uncertainty (prospect)

<table>
<thead>
<tr>
<th>Source</th>
<th>Accuracy</th>
<th>v12,v34</th>
<th>HFS</th>
<th>μ_μ/μ_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic Field</td>
<td>20 ppb</td>
<td></td>
<td>0.0 ppb</td>
<td>10 ppb</td>
</tr>
<tr>
<td>RF power</td>
<td>0.2%</td>
<td>4Hz</td>
<td>0.8 ppb</td>
<td>8 ppb</td>
</tr>
<tr>
<td>Kr gas temp.</td>
<td>0.2 K</td>
<td>< 2Hz</td>
<td>0.4 ppb</td>
<td>4 ppb</td>
</tr>
<tr>
<td>Kr gas pressure</td>
<td>0.01 hPa</td>
<td>1Hz</td>
<td>0.2 ppb</td>
<td>0 ppb</td>
</tr>
<tr>
<td>H impurity</td>
<td><50 ppm</td>
<td>1Hz</td>
<td>0.5 ppb</td>
<td>0 ppb</td>
</tr>
<tr>
<td>Quadratic pressure dependence</td>
<td></td>
<td>5Hz</td>
<td>1.0 ppb</td>
<td>5 ppb</td>
</tr>
<tr>
<td>Muonium Position (x,y)</td>
<td>1mm</td>
<td>3 Hz</td>
<td>0.6 ppb</td>
<td>6 ppb</td>
</tr>
<tr>
<td>Muonium position (z)</td>
<td>1mm</td>
<td>< 1 Hz</td>
<td>0.2 ppb</td>
<td>2 ppb</td>
</tr>
<tr>
<td>Beam intensity</td>
<td>1e-4</td>
<td>< 1 Hz</td>
<td>0.2 ppb</td>
<td>2 ppb</td>
</tr>
<tr>
<td>Detector pile up</td>
<td></td>
<td>2.8 Hz</td>
<td>0.5 ppb</td>
<td>3 ppb</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.3 Hz</td>
<td><0.1 ppb</td>
<td>1 ppb</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Without ab.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>With ab.</td>
</tr>
</tbody>
</table>

Total systematic uncertainty: MuHFS ~2 ppb, μ_μ/μ_p ~20 ppb

We hope this experiment will be held in 2019
Summary

• Precise measurement for muonium HFS is the most rigorous validation of the bound-state QED.

• MuSEUM group measured MuHFS at zero magnetic field.
 • For the 1st measurement, we obtained the value of MuHFS and its uncertainty. **4.463 292 (22) GHz (4.9 ppm)**
 • We measured MuHFS with the larger cavity and lower gas pressures to reduce the uncertainties.

• For high-field measurement, R&D is ongoing.
 • Shimming B-field in the magnet
 • Development of precise magnetic probes

Thank you for listening!
Backup slides
Breit-rabi diagram

- Hamiltonian describing energy splitting of the muonium $1^2S_{1/2}$ state

$$\mathcal{H} = \hbar \Delta \nu_{\text{HFS}} \vec{I} \cdot \vec{J} + g_J \mu_B \vec{J} \cdot \vec{H} - g'_\mu \mu_B^e \vec{I} \cdot \vec{H}$$

- Spin states splits to substructure

$$\nu_{12} = -\frac{\mu_B^\mu g'_\mu H}{\hbar} + \frac{\Delta \nu_{\text{HFS}}}{2} \left[(1 + x) - \sqrt{1 + x^2} \right]$$

$$\nu_{34} = \frac{\mu_B^\mu g'_\mu H}{\hbar} + \frac{\Delta \nu_{\text{HFS}}}{2} \left[(1 - x) + \sqrt{1 + x^2} \right]$$

$$\left(x \propto H \right)$$

- In the limit of a strong magnetic field ($x \gg 1, x \sim 10.7$ with 1.7 T)

$$\nu_{12} + \nu_{34} = \Delta \nu_{\text{HFS}}$$

$$\frac{\mu_\mu}{\mu_p} = \frac{1}{2} \left(\frac{\nu_{34} - \nu_{12}}{\nu_p} \right) \frac{g_\mu}{g'_\mu}$$

$$\frac{m_\mu}{m_e} = \frac{g_\mu}{2} \frac{\mu_p}{\mu_\mu} \frac{\mu_B^e}{\mu_p}$$

1.7 T Measurement

Direct MuHFS measurement

$\Delta \nu_{\text{HFS}} = \nu_{34} + \nu_{12}$

$\mu_\mu/\mu_p \propto \nu_{34} - \nu_{12}$
Why 1.7 T?

- For TM_{mn0} mode, the resonance frequency of a cavity is in inverse proportion to its radius.
- To measure both ν_{12} and ν_{34}, require that $\nu_{12}/\nu_{34} = f_{110}/f_{210}$. $\Rightarrow B=1.55$ T.
- Considering cavity perturbations by tuning bars, optimum B is 1.7 T.
μ_μ/μ_p uncertainty for muon g-2

- **μ_μ/μ_p : essential parameter for muon g-2 measurement**

\[a_\mu(\text{exp}) = \frac{(g - 2)_\mu}{2} = \frac{R}{\mu_\mu/\mu_p - R} \]

- **R**: Planning 140 ppb measurement at J-PARC and Fermilab
- **μ_μ/μ_p**: 30 ppb (HFS result + the SM calculation)
 - \(\rightarrow 10 \text{ ppb measurement without assuming the SM} \)

In the BNL experiment, \(\Delta \nu_{\text{HFS}} \) and calculation assuming the SM is used

\[\Delta \nu_{\text{HFS}} = \frac{16}{3} \alpha^2 c R_\infty \frac{m_e}{m_\mu} \left[1 + \frac{m_e}{m_\mu} \right]^{-3} + \text{corrections} \]

extract \(m_e/m_\mu \)

\[\frac{\mu_\mu}{\mu_p} = \left(\frac{g_\mu}{2} \right) \left(\frac{m_e}{m_\mu} \right) \left(\frac{\mu_B^e}{\mu_p} \right) \]
Contribution to other physics topics

- Lorentz violating background field can be detected as sidereal oscillation of MuHFS

- Constraint on Standard Model Extention (SME) parameters

 A. H. Gomes, V. A. Kostelecky and A. J. Vargas, PRD 90 076009 (2014)
Methods of Mu production for MuHFS exp.

- Beam foil
 - cannot apply to ours
 - appliable to the measurement of lamb shift transition \((2S_{1/2} \rightarrow 2P_{1/2})\)
- SiO\(_2\) powder
 - formed in vacuum (unlike gas target)
 - both the production rate and the polarization are insufficient
 - cannot distinguish between signals of muon decay in vacuum and in a powder target.

![Diagram showing beam foil, SiO\(_2\) powder, and gas target with their respective yields and polarizations](image)
Why Kr gas?

- Noble gases are suitable to avoid chemical reactions and depolarizing collisions.

\[\text{Ionization E of Kr} = 14.00 \text{ eV} \]

\[\text{Threshold energy} = 0.46 \text{ eV} \rightarrow \text{low energy Mu} \]

- Kr -> Mu fraction \(f_{\text{Mu}} \sim 100 \% \rightarrow \text{ideal} \)

Table: Comparison of atoms or molecules

<table>
<thead>
<tr>
<th>atom or molecule</th>
<th>threshold energy (eV)</th>
<th>pressure (atm)</th>
<th>(f_{\text{Mu}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>+11.04</td>
<td>1.2–3.1</td>
<td>0(1)</td>
</tr>
<tr>
<td>Ne</td>
<td>+8.02</td>
<td>1.2</td>
<td>7(5)</td>
</tr>
<tr>
<td>Ar</td>
<td>+2.22</td>
<td>1.0–2.8</td>
<td>74(4)</td>
</tr>
<tr>
<td>Kr</td>
<td>+0.46</td>
<td>0.4–0.95</td>
<td>100(5)</td>
</tr>
<tr>
<td>Xe</td>
<td>-1.41</td>
<td>0.4–0.65</td>
<td>100(4)</td>
</tr>
<tr>
<td>(\text{N}_2)</td>
<td>+2.0</td>
<td>1.0–2.4</td>
<td>84(4)</td>
</tr>
<tr>
<td>(\text{CH}_4)</td>
<td>-0.6</td>
<td>1.2–3.0</td>
<td>87(4)</td>
</tr>
</tbody>
</table>
Muon decay

- Angular distribution of decay e^+ is

$$N(y, \theta) = \frac{\gamma}{2\pi} y^2 \{(3 - 2y) + (2y - 1)\cos \theta\}$$

where

- y : e^+ momentum in units of $\frac{1}{2}m_\mu c$
- θ : angle between μ spin direction and e^+ momentum

- maximum momentum of decay e^+ is 52.83 MeV/c
TM_{nm0} mode of cavity

- Along z axis: E_z is constant, and $B_z=0$
- A cross-sectional view of cavity
 - Red: electric field
 - Green: B-field
Power measured by a monitoring antenna

by S. Kanda (RIKEN)
Other B-field effect in zero field exp.

- Only the transitions between 1-4 and 3-4 contribute to the signal
- ν_{14} and ν_{34} shift by 14 Hz/nT in opposite directions

\rightarrow Broadening effect on the signal

B~100 nT \rightarrow this effect is negligible

Energy-diagram of muonium in ground state in very small B-field
Fluxgate probe

- Triaxial fluxgate magnetic probe (made by MTI Corp., FM-3500)
- 0.5 nT resolution for each axis, linearity 5 nT