Measurement of the 129Xe EDM

Courtesy of B. Santra

MIXed

Measurement and Investigation

of the Xenon-129 electric dipole moment

W. Heil

Symposium on Symmetries in Subatomic Physics, Aachen 2018

university of groningen

EDM precision experiments (upper limits)

Finite size violation of Schiff screening

Diamagnetic EDMs – "Schiff suppression: ε"

For a finite nucleus, the charge and EDM have different spatial distributions

S-Schiff moment:
$$\vec{S} = S\frac{\vec{I}}{I} = \frac{1}{10} \left[\int e\rho(\vec{r})\vec{r}r^2d^3r - \frac{5}{3Z}\vec{d}\int\rho(\vec{r})r^2d^3r \right]$$

Schiff moment is dominant CP-odd N-N interaction for large atoms

$$d_A = k_A \cdot 10^{-17} \cdot \left[\frac{S}{e \, fm^3}\right] e \, cm$$
 (k_{Xe} ~ 0.38)

 $d_A = \varepsilon \cdot d_{nuc}$

 $S = S\left(\overline{g}_{\pi NN}^{(i)}, d_n, d_p, \ldots\right)$ (low energy parameters)

•
$$d_A \sim 10 Z^2 (R_N / R_A)^2 d_{nuc} \sim O(10^{-3}) d_{nuc}$$

• Nuclear deformation can enhance heavy atom EDMs (e.g., 225Ra, 223Rn)

¹²⁹Xe electric dipole moment

 $\mathbf{E}_{\uparrow\uparrow} \quad \mathbf{E}_{\uparrow\downarrow} \quad \delta \omega_{EDM} = \Delta \omega_{\uparrow\uparrow} - \Delta \omega_{\uparrow\downarrow} = 4 \cdot E \cdot d_{Xe} / \mathbf{h}$

Zeeman: $\mu B_0 \approx 10^{-13} \text{ eV}$ $d_{\chi e} \cdot \mathbf{E} \approx 10^{-25} \text{ eV}$

Comagnetometry to get rid of magnetic field drifts

$$\omega_L = \gamma \cdot B_0$$

Observable:

weighted frequency (phase) difference

$$\Delta \omega = \omega_{Xe} - \frac{\gamma_{Xe}}{\gamma_{He}} \omega_{He}$$
$$\Delta \phi = \phi_{Xe} - \frac{\gamma_{Xe}}{\gamma_{He}} \phi_{He}$$

$$\delta\omega_{EDM} = \Delta\omega_{\uparrow\uparrow} - \Delta\omega_{\uparrow\downarrow} = 4 \cdot E \cdot d_{Xe} / h$$

Experimental Setup: Overview

Coil assembly

Non-magnetic ℓHe Dewar housing three low-T_c SQUID gradiometers

Experimental Setup: EDM-Cell

10 cm

Results of automatic gradient compensation

(Downhill-simplex algorithm)

Spherical cell (diameter 10 cm)

filled with 30 mbar of polarized ³He

~ 10 min per iteration step

total measurement time: ~ 4 hours

$S_{He} \propto \exp\Big($	$-t/T_{2}^{*}$	(∇B)
----------------------------	----------------	--------------

Iteration	C _x / mA	C _y / mA	C _z / mA	C _c / mA	Spin coherence time T ₂ * / s	effective gradients
start	0	0	0	0	7499	~30 pT/cm
0	0	0.15	0	0	9758	
1	0.11	0.11	-0.30	0.11	14750	
3	0.30	0.30	-0.34	0.01	26590	
5	0.33	0.30	-0.60	0.02	35120	
13	0.30	0.40	-0.67	0.18	37686	< 10 pT/cm

Weighted phase difference (no EDM):

$$\Delta \Phi = \Phi_{Xe} - \frac{\gamma_{Xe}}{\gamma_{He}} \cdot \Phi_{He} = const.$$

The detection of the free precession of co-located ³He/¹²⁹Xe sample spins can be used as ultra-sensitive probe for non-magnetic spin interactions of type:

$$V_{non-magn.} = \vec{a} \cdot \vec{\sigma}$$

Search for EDM of Xenon: $V(r)/\hbar = -|d_{Xe}|\vec{\sigma} \cdot \vec{E}/\hbar$

$$\Delta \Phi_{EDM}(t) = \int_{0}^{t} (2|d_{Xe}|\sigma \cdot E / h) dt \propto t$$

Subtraction of deterministic phase shifts

Influence of Electric field switching period

EDM uncertainty / 10^-28 ecm

15

10

5

()

6000

Phase residuals are statistically distributed ar

Xe-EDM results

Evaluation of systematics still ongoing

Conclusion and outlook

SNR~ 10000 @ $f_{BW} = 1 Hz$ <E> = 0.8 kV/cm $T_{2,Xe} * 3 h \rightarrow 9h EDM$ -runs $\delta d_{Xe} = 4 \times 10^{-28} ecm/day$

	Room for improvements	Factor
Jülich Research Center	Increase the electric field strength (now: E=800 V/cm)	4 to 5
	Increase Xe and He partial pressure (tradeoff between signal strength and spin coherence time)	2
University Heidelberg	New Magnetically Shielded Room at Heidelberg improves noise level and reduces magnetic field gradients	10
	Increase measurement time to 200 days	10

Thank you for your attention.

Mixed Measurement and Investigation of the Xenon-129 electric dipole moment

Precession Measurement

EDM-cell

Downhill-simplex algorithm

The detection of the free precession of co-located ³He/¹²⁹Xe sample spins can be used as ultra-sensitive probe for

non-magnetic spin interactions of type:

$$V_{non-magn.} = \vec{a} \cdot \vec{\sigma}$$

> Search for a Lorentz violating sidereal modulation of the Larmor frequency $V(r)/\hbar = \langle \tilde{b} \rangle \hat{\epsilon} \cdot \vec{\sigma} / \hbar$

Search for spin-dependent short-range interactions

$$V(r)/\hbar = c\vec{\sigma}\cdot\hat{n}/\hbar$$

$$V(r)/\hbar = -|\mathbf{d}_{\mathbf{n}}|\vec{\sigma}\cdot\vec{E}/\hbar$$

Observable:

Search for EDM of Xenon

. . .

$$\Delta \omega = \omega_{L,He} - \frac{\gamma_{He}}{\gamma_{Xe}} \cdot \omega_{L,Xe} \neq 0$$

Measurement of leakage currents Resolution ~100 fA At high potential (+5 kV) Battery powered, optical interface

Setup

Measuring the free induction decay of polarized ³He and ¹²⁹Xe with SQUID gradiometers

> Heavy atoms (relativistic treatment) + finite size: $\varepsilon \neq 0$

$$-d_e \neq 0 \rightarrow d_{atom} \neq 0$$
 $\sim Z^3 \alpha^2 d_e$

- P,T-odd eN interaction
 Tensor-Pseudotensor ~Z²G_FC_T
 Scalar- Pseudoscalar ~Z³G_FC_S
- Nuclear EDM finite size
 Schiff moment induced by P,T-odd N-N interaction ~10⁻²⁵ η [ecm]
- General finding:

 $\eta(d_n, d_p, \bar{g}_0, \bar{g}_1, \bar{g}_2)$ $\smile \overline{\Theta}_{QCD}$

Paramagnetic EDMs: "Schiff enhancement" (ε >> 1) Diamagnetic EDMs: "Schiff suppression" (ε << 1)

Diamagnetic atoms:

Phys. Rep. 397 (04) 63; Phys. Rev. A 66 (02) 012111.

 $d(^{129}Xe) = 10^{-3}d_e + 5.2x10^{-21}C_T + 5.6x10^{-23}C_S + 6.7x10^{-26}\eta \approx 6.7x10^{-26}\eta$

Results: Hg-EDM

$$d_{\rm Hg} = (-2.20 \pm 2.75_{\rm stat} \pm 1.48_{\rm syst}) \times 10^{-30} \ e \,{\rm cm},$$

$$\left| d_{Hg} \right| < 7.4 \times 10^{-30} \, ecm \quad (95\% \, \text{CL})$$

Limits on CP-violating observables from ^{199}Hg EDM limit $\mathbf{d}_{\text{Hg}} = -2.4 \times 10^{-4} \mathbf{S}_{\text{Hg}}/\text{fm}^2.$

Quantity	Expression	Limit	Ref.
\mathbf{d}_n	$S_{Hg}/(1.9 \text{ fm}^2)$	$1.6 \times 10^{-26} \ e {\rm cm}$	[21]
\mathbf{d}_p	$1.3 \times S_{Hg}/(0.2 \text{ fm}^2)$	$2.0 \times 10^{-25} e \mathrm{cm}$	[21]
\bar{g}_0	$S_{Hg}/(0.135 \ e \ fm^3)$	2.3×10^{-12}	[5]
\bar{g}_1	$S_{Hg}/(0.27 \ e \ fm^3)$	1.1×10^{-12}	[5]
\bar{g}_2	$S_{Hg}/(0.27 \ e \ fm^3)$	1.1×10^{-12}	[5]
$\bar{ heta}_{QCD}$	$\bar{g}_0/0.0155$	1.5×10^{-10}	[22,23]
$(\tilde{d}_u - \tilde{d}_d)$	$\bar{g}_1/(2 \times 10^{14} \text{ cm}^{-1})$	5.7×10^{-27} cm	[25]
C_{S}	$d_{\rm Hg}/(5.9 \times 10^{-22} \ e {\rm cm})$	1.3×10^{-8}	[15]
C_P	$\mathbf{d}_{\rm Hg}/(6.0 \times 10^{-23} \ e {\rm cm})$	1.2×10^{-7}	[15]
C_T	$\mathbf{d}_{\rm Hg}/(4.89 \times 10^{-20} \ e {\rm cm})$	1.5×10^{-10}	see text

Features of ³He/¹²⁹Xe spin-clocks

Accuracy of frequency estimation:

example: SNR = 10000:1,
$$f_{BW} = 1$$
 Hz, T = 1 day $\Rightarrow \sqrt{\sigma_f^2} \approx pHz$

Magnetically shielded room (MSR) at Jülich Research Center

Minimizing magnetic field gradients

(arXiv:1608.01830v1)

$$\frac{1}{T_2^*} = \frac{1}{T_1} + \frac{8R^4\gamma^2}{175D} \left(|\nabla B_z|^2 + a(\lambda) \cdot \left(|\nabla B_x|^2 + |\nabla B_y|^2 \right) \right)$$
$$0 < a(\lambda) < 0.5 \qquad \lambda = \frac{D^2}{\gamma^2 B_0^2 R^4} \propto \frac{1}{p^2}$$

.... systematics (cont.)

motional magnetic fields

$$\hat{B}_m = \frac{1}{c^2} \left(\hat{v} \times \hat{E} \right)$$

parameter correlations