Particle physics

International teachers program

July 2018

part III

European Org

European Organisation for Nuclear Research

"Magic is not happening at CERN, magic is explained at CERN" - Tom Hanks

Kristof Schmieden *EP Department*

Standard model of particle physics

- Elementary particles
 - Constituents of matter
 - Fermions (S=1/2)
 - Force carries
 - Bosons (S=1)

Doublets under weak interaction

1,777 GeV

Tau

0,511 MeV

Elektron

eptonen

105,7 MeV

Myon

Eichbosonen

80,4 GeV

Is the universe stable until the end of time?

- Does vacuum energy of Higgs field correspond to local or global minimum?
 - If local: is there a state of lower energy?
 - Could the universe tunnel into the lower energy state?
- Depends on masses of top quark & Higgs boson

- Average tunnel time
- $\sim 10^{100} \text{ years}$
- probably OK for us ;)

HISTORY OF THE UNIVERSE

Neutrinos

Sources of neutrinos

• Sun / Supernovae: Nuclear fusion

$$^{1}H + ^{1}H \rightarrow ^{2}H + e^{+} + \nu_{e} + 0,42 \,\mathrm{MeV}$$

- Nuclear reactors: fission
 - β decay of spallation products and neutrons $\rightarrow \nu_e$

- Atmosphere:
 - Decaying muons from cosmic rays → ν_μ, ν_e

- Accelerators:
 - Muon decays $\rightarrow \nu_{\mu}, \nu_{e}$

Neutrino oscillations

- Detection of stellar neutrinos in Homestake experiment:
 - Measured neutrino flux 50% of expectation from sun's luminosity

- Detection of stellar neutrinos in Kamiokande
 - Confirms Homestake results

Super Kamiokande: 1998

Davis Jr.: 1960ies

- Detection of atmospheric neutrinos
 - Flux of neutrinos arriving from "top" and "bottom" differs by ~50%.
 - What happens to the neutrinos within the earth?

- Neutrinos can oscillate from one flavour to another!
 - Note: only electron & muon neutrinos are detected in those experiments

Superkamiokande

- 40m x 40m
 - 50 kt of purified water
- Solar & Atmospheric neutrinos
- 4k Solar neutrinos / year
- -> 10 per day

Neutrino oscillations

Analogy to quark sector

=> Maki-Nakagawa-Sakata-Matrix

- Mass eigenstates != flavour eigenstates
- Mixing allowed → oscillations
- Requires: $m_v > 0 \& m_{v1} != m_{v2} != m_{v3}$

$$\begin{pmatrix} \nu_{\alpha} \\ \nu_{\beta} \end{pmatrix} = \begin{pmatrix} \cos \Theta_{m} & \sin \Theta_{m} \\ -\sin \Theta_{m} & \cos \Theta_{m} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \end{pmatrix},$$

Muon neutrino

Tau neutrino

$$P(\nu_{\alpha} \to \nu_{\beta}) = |\langle \nu_{\beta}(0) | \nu_{\alpha}(L) \rangle|^{2} \approx \sin^{2} \left(\frac{\Delta m^{2} c^{4}}{4E} \frac{L}{\hbar c} \right) \cdot \sin^{2} (2\Theta_{m})$$

Neutrino oscillations - detection

- Various reactor and accelerator based experiments
 - Detectors in varying distance to sources
 - Double Chooz, KamLand, DayaBay / T2K, Opera, Minos, DUNE
 - Measurement: disappearance of neutrino flux
- Opera: Detected appearance of tau-neutrinos!

- Opera: 2010-2014
- Neutrino beam (μ, e) from CERN sent 740km to Gran Sasso (IT)
- Detection of tau-neutrinos in neutrino beam (5x)

Neutrino Detectors

CERN neutrino platform:

Test facility for future neutrino detectors.

How do neutrinos gain mass?

CERN

- And why is mass so little? (< 2eV)
- Like fermions: coupling to Higgs field?
 - Requires left & right handed neutrinos
 - Only left-handed neutrinos observed!
- Other mechanism?
- One option: See-Saw mechanism:

- Neutrinos are Majorana particles (their own anti-particles)
- In addition very heavy right handed neutrinos (sterile Neutrinos)
 - Require very small mass for known neutrinos
- Violated lepton number conservation & B-L
 - Possible explanation of the existence of matter via lepto-genesis

See saw mechanism

- Idea: one or more right handed neutrino fields, inert under weak interaction (sterile)
 - Mass matrix in 1 generation between sterile and Dirac neutrinos:

$$\begin{pmatrix} 0 & M \\ M & B \end{pmatrix} \text{ Dirac mass ~ EW scale (246 GeV)} \\ \text{B >> M} \\ \text{Majorana mass ~GUT scale (10$^{19} GeV)} \\$$

Eigenvalues ~ Neutrino masses:

$$\lambda_{\pm} = \frac{B \pm \sqrt{B^2 + 4M^2}}{2}$$

$$\lambda_- pprox -rac{M^2}{B}$$
 ~ 1eV

$$\lambda_{+} \approx B$$

If one eigenvalue goes up, the other goes down => see saw

Standard model of particle physics

- Elementary particles
 - Constituents of matter
 - Fermions (S=1/2)
 - Force carries
 - Bosons (S=1)

Doublets under weak interaction

1,777 GeV

Tau

80,4 GeV

0.511 MeV

Elektron

eptonen

105,7 MeV

Myon

Success of SM

Few Loose ends to tie

Gravitation

- Gravitation con not be described within the standard model
 - **Problem in theories:** general relativity and quantum mechanics can not me merged consistently
- Wy is gravity so weak?
 - Dominates on macroscopic skales
 - Neglectacble on particle level!
 - 10⁻³⁸ weaker as electromagnetic interaction!

• Extra dimensions?

Gravitation

Why is gravitation so weak?

Schwerkraft

unser dreidimensionales
Universum

Extra-Dimension

• Extra dimensions?

- Predictions of ,black holes'
 - Particles that could be created at the LHC
- Scattering off compact dimensions
- Kaluza-Klein towers / excitations
 (= standing wave in extra dimension)

Not observed to date :(

Gravitation - String Theory

- One fundamental object:
 - String
 - Size ~ Planck length: 10⁻³⁵m

~1980 till today

- Could be open or closed
- Attached to "world-Brane"
- Oscillation mode corresponds to observable particles
- Branes live in 11 dimensional space
 - M-theory
- Very simple & elegant approach
 - Unification of all forces (including quantum description of gravitation)
 - Extremely hard to calculate. Until today no predictions that could be verified

What about anti-matter?

 Known asymmetry between matter & anti-matter can not explain matter anti-matter asymmetry in the universe

- CP violation in weak interaction
 - physics processes distinguish between matter & antimatter
 - LHCb investigates this
- There has to be a yet unknown interaction in addition to the SM ones!

- => How much energy contains the universe?
 - Cosmology lecture

assuming only known asymmetry between particles & anti-particles: generated matter / anti-matter in big bang > total energy density of universe

Intermezzo - Cosmology

• Study of cosmic microwave background:

WMAP / Planck: 2010 / 2015

- Universe cools down → neutral atoms → transparent for em. rad.
- Radiation from this era: while traveling through the universe, wavelength stretched with expansion of space itself
 - x-rays → microwaves

- Fit of ΛCDM model to data. Parameters:
 - Baryon-density, matter density, curvature of space,

Planck: 2015

dark matter?

baryons

dark energy ???

Several candidates + extensions of SM trying to describe DM

- Properties:
 - Massive (gravitation)
 - Weak interaction

→ Neutrinos?

Nope! Only non-relativistic particles contribute to structure formation in the universe

- Properties:
 - Massive (gravitation)
 - Weak interaction
 - ~non relativistic

- Candidates:
 - WIMPs (Lightest supersymmetric particle?)
 - Axions
 - Sterile neutrinos

A word on super symmetry

- New symmetry:
 - Each Boson (S=0,1) is assigned a fermion (S=1/2) and vice versa

A word on super symmetry ... or two

- Completes SM → all possible symmetries utilized
 - New particles influence "running" of couplings
 - Grand unification possible

- New conserved quantity: R-parity (+1 for particles, -1 for super-partners)
 - Lightest super symmetric particle must be stable!
 - Candidate for dark matter
 - Parameter space for super symmetry is huge
 - Parameters determine particle masses, can be (nearly) arbitrary

Can not be excluded

Axions

- Solve "strong CP problem"
- QCD allows CP violating reactions. Strength parametrised by parameter θ
 - CP violation → electric dipole moment of the neutron
 - Experimentally: EDM(n) < 10⁻²⁵ e⋅cm
 - Why? Seems non "natural" (fine tuning)
- Introducing yet another complex scalar field
 - Corresponding symmetry is spontaneously broken (as in Higgs mechanism)
 - θ becomes ,dynamically exactly 0
 - Requires additional massive particle: Axion
 - Candidate for dark matter

Peccei, Quinn: 1977

28

Primakov Effekt

CAST (Cern Axion TeleScope)

Prototype LHC dipole

Prototype x-ray telescope (Abrixa)

All dark is intriguing

Planck: 2015

Dark matter?

Baryons

Dark energy ???

- Dark energy is completely not understood
 - Connection to theory of inflation?
 - Vacuum fluctuations?
 - Quintessence ?

Many open question / issues

- Gravitation!
 - Why is gravitation so weak?
- Why is there no anti matter in the universe?
- Dark sector? (dark matter, dark energy)
- What is the nature of neutrinos?
- Why do we have exactly 3 particle generations?
- Why do particles have different masses?

https://en.wikipedia.org/wiki/List_of_unsolved_problems_in_physics

Literaturverzeichnis

- [2] Rainer Müller Eigene Grafik, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=8742784
- [3] Von Kurzon Eigenes Werk, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32422326
- [4] By Sch (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0) or GFDL (http://www.gnu.org/copyleft/fdl.html)], via Wikimedia Commons
- [5] Economist: http://www.economist.com/blogs/graphicdetail/2012/07/daily-chart-1
- [6] CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=75046
- [7] http://www.orbitals.com/orb/
- [8] C. Anderson, PhysRev.43.491, http://link.aps.org/doi/10.1103/PhysRev.43.491
- [9] Own work by uploader Emokderivative work: WikiMichi (talk) Casimir plates.svg, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=8900709
- [10] http://www.cosmiq.de/qa/show/934946/wie-funktionieren-austauschteilchen/
- [11] <u>Determination of the energy measurement accuracy for charged particles by their range in nuclear photoemulsion A.S. Barabash (Moscow, ITEP) et al.</u>. Nov 2012. 8 pp. Phys.Inst. 39 (2012) 300-304 http://arxiv.org/abs/1211.1471v2
- [12] ATLAS-CONF-2013-041, https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2013-041/
- [13] M. Breidenbach, J. I. Friedman, H. W. Kendall, et. al. Phys. Rev. Lett. 23, 935
- [14] Von MissMJderivative work: Polluks (talk) Standard_Model_of_Elementary_Particles.svg, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=11307906
- [15] D. Perkins: Introduction to high energy physics
- [16] www.physi.uni-heidelberg.de/~uwer/lectures/PhysikV/Vorlesung/Kapitel-VIIa.pdf Kristof Schmieden

Inflation

History of the Universe

