DUNE ND Concepts

Alfons Weber University of Oxford & STFC/RAL

CENF-ND Start-up Meeting 10-July-2017

Science & Technology Facilities Council Rutherford Appleton Laboratory

What does the ND need to measure?

- Constrain systematics in far detector v_e /anti- v_e appearance signal
 - CDR level (2%)
- Measurement Strategy
 - Understand detector response and model dependence
 - electron & muon neutrino interactions (LAr TPC)
 - inclusive & exclusive v_{μ} CC interactions
 - in Ar and (other materials) in a low-density tracker
 - Understand flux shape
 - low-nu method (little hadronic energy)
 - Understand near-to-far extrapolation
 - ND can help to constrain hadron production & focussing uncertainties
 - measure energy spectrum/flux of all neutrino flavours

Traditional Detector Concepts

ArgonCube STT Module Barrel Backward ECAL Barrel ECAL FGT RPCs End Magnet RPCs Cryocooler HVFT Coils Preamps board Top flange Forward ECAL WLS planes Cathode End RPCs -FR4 module Resistive Walls (5 mm) Field-shaper Turbo-pump **Pixels planes** Filters Bottom flange 3.5 m **HPTPC** 6.5 m

Hybrid Concepts (MPT)

- Measure details of neutrino interactions as much as needed
 Multi-Purpose Tracker
 - Inclusive and exclusive reaction
 - Particle ID
 - Momentum measurements
- Reduce cross section/flux systematics
- Understand relations between visible and neutrino energy
- Several detector options
 - (high pressure) (argon) gas TPC
 - straw-tube tracker
 - (3D) scintillator tracker

Pixel Readout Events

DUNE ND Concepts (A.Weber)

Status and Outlook

- Cryostat and module material test successfully completed (Oct 2016)
- Lightweight simulation framework summer 2017
- First TPC deployment summer 2017, pending updates to the cryogenic infrastructure.
- Pixel scalability, Light readout & feld shaping studies summer 2017.
- LArPix tests spring 2018.
- Fully instrumented module deployment 2018

Muon detector?	
	Magnetized tracker
LAr TPC	i.e. FGT, scintillator, HPAr gas TPC, MINOS-like, etc.
Muon detector?	

LAr Detector

 $2.4 < E_v < 2.6 \text{ GeV}$

 3x3x4m detector has really excellent acceptance with µID detector, but very little cross section coverage to be gained

Straw Tube Tracker

- Function
 - Use as spectrometer for LAr
 - LAr provides in-situ check of STT prediction
 - Two independent neutrino electron measurements
- **Statements**
 - 3.5 x 3.5 m² is absolute minimal transverse dimension
 - 4.5 m is minimum length

Magnet is this model is 6.5m diameter and 7 m long Maximize acceptance for μ from Lar

Coil could become pressure vessel

8.000 m -

3D Scintillator Tracker

Several options studied for T2K/ND280

upgrade

3mm thin scintillator bar made @ Fermi-lab is used.

Super FGD

1 cm³

https://indico.cern.ch/event/633840/timetable/ Please check the section "Super-FGD"

DUNE ND Concepts (A.Weber)

Other Hybrids (I)

magnetized

Science & Technology Facilities Gaucel Rutherford Appleton Laboratory

Other Hybrids (II)

magnetized

Science & Technology Facilities Gaucel Rutherford Appleton Laboratory

Science & Technology Facilities Council Rutherford Appleton Laboratory

DUNE Current Status

- Pixelated LAr Detector
 - Not magnetized -
 - Size: around 3x3x4 m³
 - Functionally coupled to MPT -
- MPT \Leftrightarrow high resolution detector
 - Magnetized (dipole or solenoid?)
 - Straw-Tube Tracker or High Pressure TPC -

Major Milestones

Q1/2017: 1 st ND design workshop at FNAL	
Q2/2017: 2 nd ND workshop at FNAL	
Q3/2017: narrow down ND options	(on track)
Q4/2017: 3 rd ND workshop at CERN	(on track)
Q4/2017: Concept for ND agreed	(Q1/2018)
Including plausible funding model	
Q4/2018: ND CDR	(on track)
Q1/2020: ND TDR available for review in August	(on track)
Q4/2026: ND ready for beam	(on track)

Backup

Why Near Detectors

Overly simplified

DUNE ND Concepts (A.Weber)

Introduction

Oscillation probabilities

$$P_{\nu_{\mu} \to \nu_{e}}(E_{\nu}) = \frac{\phi_{\nu_{e}}^{far}(E_{\nu})}{\phi_{\nu_{\mu}}^{far,no-osc}(E_{\nu})} = \frac{\phi_{\nu_{e}}^{far}(E_{\nu})}{\phi_{\nu_{\mu}}^{near}(E_{\nu}) * F_{far/near}(E_{\nu})}$$

Number of events/energy spectrum

Well known (1-2%)

$$\frac{dN_{\nu}^{det}}{dE_{\nu}} = \phi_{\nu_{\mu}}^{det}(E_{\nu}) * \sigma_{\nu_{\mu}}^{Ar}(E_{\nu})$$

• In reality

$$\frac{dN_{\nu}^{det}}{dE_{rec}} = \int \phi_{\nu}^{det}(E_{\nu}) * \sigma_{\nu}^{target}(E_{\nu}) * D_{\nu_{\mu}}^{det}(E_{\nu}, E_{rec}) dE_{\nu}$$

- Folding of detector effects
 - Prevents (easy) cancellations of many systematic effects
 - Needs unfolding

Are there cancellations?

Oscillation signal

Small theo. uncertainty

$$\frac{dN_{\nu_e}^{far}}{dE_{\nu}} / \frac{dN_{\nu_{\mu}}^{near}}{dE_{\nu}} = P_{\nu_{\mu} \to \nu_e}(E_{\nu}) * \frac{\sigma_{\nu_e}^{Ar}(E_{\nu})}{\sigma_{\nu_{\mu}}^{Ar}(E_{\nu})} * F_{far/near}(E_{\nu})$$

Near muon/electron ratio

$$\frac{dN_{\nu_e}^{near}}{dE_{\nu}} / \frac{dN_{\nu_{\mu}}^{near}}{dE_{\nu}} = \frac{\sigma_{\nu_e}^{Ar}(E_{\nu})}{\sigma_{\nu_{\mu}}^{Ar}(E_{\nu})} * \frac{\phi_{\nu_e}^{near}(E_{\nu})}{\phi_{\nu_{\mu}}^{near}(E_{\nu})}$$

- Need to know
 - Flux & cross section ratios
 - Far/near extrapolation

Not so small uncertainty

1-2% uncertainty

But in Reality

$$\frac{\frac{dN_{\nu_e}^{far}}{dE_{rec}}}{\frac{dN_{\nu_{\mu}}^{near}}{dE_{rec}}} = \frac{\int P_{\nu_{\mu} \to \nu_e}(E_{\nu}) * \phi_{\nu_{\mu}}^{near}(E_{\nu}) * F_{far/near}(E_{\nu}) * \sigma_{\nu_e}^{Ar}(E_{\nu}) * D_{\nu_e}^{far}(E_{\nu}, E_{rec}) dE_{\nu}}{\int \phi_{\nu_{\mu}}^{near}(E_{\nu}) * \sigma_{\nu_{\mu}}^{Ar}(E_{\nu}) * D_{\nu_{\mu}}^{near}(E_{\nu}, E_{rec}) dE_{\nu}}$$

- No cancellations •
 - Unless you unfold
- Need to understand especially ٠
 - Detector effects in near and far detector
 - Relation of visible to neutrino energy -
 - Cross section ratios
 - Near to far flux extrapolation
- Flux normalisation cancels •
 - Shape is important

Event Rates

$$\frac{dN_{\nu_{\mu}}^{near}}{dE_{rec}} = \int \phi_{\nu_{\mu}}^{near}(E_{\nu}) * \sigma_{\nu_{\mu}}^{Ar}(E_{\nu}) * D_{\nu_{\mu}}^{near}(E_{\nu}, E_{rec}) dE_{\nu}$$
$$\frac{dN_{\nu_{e}}^{near}}{dE_{rec}} = \int \phi_{\nu_{e}}^{near}(E_{\nu}) * \sigma_{\nu_{e}}^{Ar}(E_{\nu}) * D_{\nu_{e}}^{near}(E_{\nu}, E_{rec}) dE_{\nu}$$

$$\frac{dN_{\nu_{\mu}}^{far,no-osc}}{dE_{rec}} = \int \phi_{\nu_{\mu}}^{far}(E_{\nu}) * \sigma_{\nu_{\mu}}^{Ar}(E_{\nu}) * D_{\nu_{\mu}}^{far}(E_{\nu}, E_{rec}) dE_{\nu}$$
$$\phi_{\nu_{\mu}}^{far,no-osc}(E_{\nu}) = \phi_{\nu_{\mu}}^{near}(E_{\nu}) * F_{far/near}(E_{\nu})$$
$$\phi_{\nu_{e}}^{far}(E_{\nu}) = P_{\nu_{\mu} \to \nu_{e}}(E_{\nu}) * \phi_{\nu_{\mu}}^{far,no-osc}(E_{\nu})$$

$$\frac{dN_{\nu_{\mu}}^{far}}{dE_{rec}} = \int \phi_{\nu_{\mu}}^{far}(E_{\nu}) * \sigma_{\nu_{\mu}}^{Ar}(E_{\nu}) * D_{\mu}^{far}(E_{\nu}, E_{rec}) * P_{\nu_{\mu} \to \nu_{\mu}}(E_{\nu}) dE_{\nu}$$
$$\frac{dN_{\nu_{e}}^{far}}{dE_{rec}} = \int \phi_{\nu_{\mu}}^{far}(E_{\nu}) * \sigma_{\nu_{e}}^{Ar}(E_{\nu}) * D_{\nu_{e}}^{far}(E_{\nu}, E_{rec}) * P_{\nu_{\mu} \to \nu_{e}}(E_{\nu}) dE_{\nu}$$

science & Technology Facilities Council Rutherford Appleton Laboratory