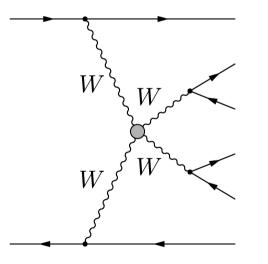


WG2: Extrapolation of limits and the Unitarity bound Matthias Mozer

COST meeting 30th August 2017


Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology

Regularization Schemes

- Issue: EFTs are *effective* theories, not UV complete => cross sections violate unitarity at high shat
- Not a conceptual problem: presumably cured by unknown UV completion
- Problem is low sensitivity of experiments:
 - Total cross section low even if VV-cross section beyond unitarity bound => need unphysical VV amplitude to get observable effect

What to do?

Dealing with low Sensitivity

Checking previous paper (8TeV, https://arxiv.org/abs/1410.6315)

Operator coefficient	Exp. lower	Exp. upper	Obs. lower	Obs. upper	Unitarity limit
$F_{S,0}/\Lambda^4$	-42	43	-38	40	0.016
$F_{S,1}/\Lambda^4$	-129	131	-118	120	0.050
$F_{M,0}/\Lambda^4$	-35	35	-33	32	80 (• • •

- "Vertrauen ist gut, Kontrolle ist besser!"
 - Quoted unitarity limits for WW channel only
 - FM0 violates unitarity much earlier for neutral channels
- Have another look
 - Will we ever be able to get enough sensitivity?

Extrapolation

- Looking at two scenarios
- Low Background:
 - Limit on observed number of events is constant
 - Limit on cross section scales linearly with lumi
 - Limit on coupling scales as sqrt(lumi) (σ~aQGC²)

High Background

- Limit on observed number of events scales with backround uncertainty (sqrt(lumi))
- Limit on cross section scales linearly with sqrt(lumi)
- Limit on coupling scales as sqrt(sqrt(lumi)) (σ~aQGC²)
- Assume ultimately ~3000fb⁻¹ data
 - ~100 times 2016 lumi

Karlsruhe Institute of Technology

Comparison

- 13TeV limits from: SMP-17-004
- Unitarity limits done with: VBFNLO form factor tool (tried to keep compute time reasonable => good to within 50%)

Operator	Unitarity limit	13TeV data limit	Extrapolation (optimist)	Extrapolation (pessimit)
FS0	0.002	7.7	0.77	2.4
FS1	0.001	20	2	6.3
FM0	0.001	6	0.6	1.9
FM1	0.004	8	0.8	2.5
FM6	0.002	11	1.1	3.4
FM7	0.009	12	1.2	3.9
FT0	0.0002	0.6	0.06	0.19
FT1	0.0006	0.25	0.025	0.08
FT2	0.0006	0.8	0.08	0.25

Summary

- Best case scenario: FT1, background free => still off the unitarity limit by a factor of ~40
- Can potentially expect some improvement in data-danalysis, but a factor of 40 is very ambitious
- Sensitivity to aQGCs in full non-unitarized EFTs not any time soon
- Solutions:
 - Conceive theory predictions which do not violate unitarity => ad hoc unitarization?
 - -> au noc unitalizatio
 - => beyond EFT?
 - Study channels, where shat is measureable
 => allows for a well defined range in shat for the analysis
 => unitarity bounds much less stingent if maximum shat is lower
 => usually not the most sensitive channels