EFT parameterization for VBS

Ilaria Brivio

Niels Bohr Institute, Copenhagen

The SMEFT

SMEFT $=$ Effective Field Theory with SM fields + symmetries

$$
\begin{gathered}
\mathcal{L}_{\text {SMEFT }}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda} \mathcal{L}_{5}+\frac{1}{\Lambda^{2}} \mathcal{L}_{6}+\frac{1}{\Lambda^{3}} \mathcal{L}_{7}+\frac{1}{\Lambda^{4}} \mathcal{L}_{8}+\ldots \\
\mathcal{L}_{n}=\sum_{i} C_{i} \mathcal{Q}_{i}^{d=n} \quad \\
\quad \begin{array}{l}
C_{i} \text { - free parameters (Wilson coefficients) } \\
\\
\mathcal{Q}_{i} \text { - gauge invariant operators that } \\
\text { form a complete basis }
\end{array}
\end{gathered}
$$

The SMEFT

SMEFT $=$ Effective Field Theory with SM fields + symmetries

$$
\begin{gathered}
\mathcal{L}_{\text {SMEFT }}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda} \mathcal{L}_{5}+\frac{1}{\Lambda^{2}} \mathcal{L}_{6}+\frac{1}{\Lambda^{3}} \mathcal{L}_{7}+\frac{1}{\Lambda^{4}} \mathcal{L}_{8}+\ldots \\
\mathcal{L}_{n}=\sum_{i} C_{i} \mathcal{Q}_{i}^{d=n} \quad \\
\quad \begin{array}{l}
C_{i} \text { - free parameters (Wilson coefficients) } \\
\\
\mathcal{Q}_{i} \text { - gauge invariant operators that } \\
\text { form a complete basis }
\end{array}
\end{gathered}
$$

any UV compatible with the SM in the low energy limit can be matched onto the SMEFT
a convenient phenomenological approach:
systematically classifies all the possible new physics signals allows to compute with no reference to the UV

The SMEFT

SMEFT $=$ Effective Field Theory with SM fields + symmetries

$$
\begin{gathered}
\mathcal{L}_{\text {SMEFT }}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda} \mathcal{L}_{5}+\frac{1}{\Lambda^{2}} \mathcal{L}_{6}+\frac{1}{\Lambda^{3}} \mathcal{L}_{7}+\frac{1}{\Lambda^{4}} \mathcal{L}_{8}+\ldots \\
\mathcal{L}_{n}=\sum_{i} C_{i} \mathcal{Q}_{i}^{d=n} \quad \\
\quad \begin{array}{l}
C_{i} \text { - free parameters (Wilson coefficients) } \\
\\
\mathcal{Q}_{i} \text { - gauge invariant operators that } \\
\text { form a complete basis }
\end{array}
\end{gathered}
$$

We consider B, L conservation and only first order deviations \rightarrow only \mathcal{L}_{6}

$$
\mathcal{L}_{\mathrm{SMEFT}}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda^{2}} \mathcal{L}_{6} \quad \quad \mathcal{L}_{6}=\sum_{i} C_{i} \mathcal{Q}_{i}
$$

there are 59 operators $=76$ (2499) real parameters for 1 (3) generation(s)

X^{3}		φ^{6} and $\varphi^{4} D^{2}$		$\psi^{2} \varphi^{3}$	
Q_{G}	$f^{A B C} G_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu}$	Q_{φ}	$\left(\varphi^{\dagger} \varphi\right)^{3}$	$Q_{e \varphi}$	$\left(\varphi^{\dagger} \varphi\right)\left(\bar{l}_{p} e_{r} \varphi\right)$
$Q_{\tilde{G}}$	$f^{A B C} \widetilde{G}_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu}$	$Q_{\varphi \square}$	$\left(\varphi^{\dagger} \varphi\right) \square\left(\varphi^{\dagger} \varphi\right)$	$Q_{u \varphi}$	$\left(\varphi^{\dagger} \varphi\right)\left(\bar{q}_{p} u_{r} \widetilde{\varphi}\right)$
$\begin{aligned} & Q_{W} \\ & Q_{\widetilde{W}} \end{aligned}$	$\begin{aligned} & \varepsilon^{I J K} W_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu} \\ & \varepsilon^{I J K} \widetilde{W}_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu} \\ & \hline \end{aligned}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger} D^{\mu} \varphi\right)^{\star}\left(\varphi^{\dagger} D_{\mu} \varphi\right)$	$Q_{d \varphi}$	$\left(\varphi^{\dagger} \varphi\right)\left(\bar{q}_{p} d_{r} \varphi\right)$
$X^{2} \varphi^{2}$		$\psi^{2} X \varphi$		$\psi^{2} \varphi^{2} D$	
$Q_{\varphi G}$	$\varphi^{\dagger} \varphi G_{\mu \nu}^{A} G^{A \mu \nu}$	$Q_{e W}$	$\left(\bar{l}_{p} \sigma^{\mu \nu} e_{r}\right) \tau^{I} \varphi W_{\mu \nu}^{I}$	$Q_{\varphi l}^{(1)}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \varphi\right)\left(\bar{l}_{p} \gamma^{\mu} l_{r}\right)$
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger} \varphi \widetilde{G}_{\mu \nu}^{A} G^{A \mu \nu}$	$Q_{e B}$	$\left(\bar{l}_{p} \sigma^{\mu \nu} e_{r}\right) \varphi B_{\mu \nu}$	$Q_{\varphi l}^{(3)}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D_{\mu}^{I}} \varphi\right)\left(\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r}\right)$
$Q_{\varphi W}$	$\varphi^{\dagger} \varphi W_{\mu \nu}^{I} W^{I \mu \nu}$	$Q_{u G}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} T^{A} u_{r}\right) \widetilde{\varphi} G_{\mu \nu}^{A}$	$Q_{\varphi e}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{\left.\stackrel{\leftrightarrow}{\mu}_{\mu} \varphi\right)}\left(\bar{e}_{p} \gamma^{\mu} e_{r}\right)\right.$
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger} \varphi \widetilde{W}_{\mu \nu}^{I} W^{I \mu \nu}$	$Q_{u W}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} u_{r}\right) \tau^{I} \widetilde{\varphi} W_{\mu \nu}^{I}$	$Q_{\varphi q}^{(1)}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \varphi\right)\left(\bar{q}_{p} \gamma^{\mu} q_{r}\right)$
$Q_{\varphi B}$	$\varphi^{\dagger} \varphi B_{\mu \nu} B^{\mu \nu}$	$Q_{u B}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} u_{r}\right) \widetilde{\varphi} B_{\mu \nu}$	$Q_{\varphi q}^{(3)}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D_{\mu}^{I}} \varphi\right)\left(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r}\right)$
$Q_{\varphi \tilde{B}}$	$\varphi^{\dagger} \varphi \widetilde{B}_{\mu \nu} B^{\mu \nu}$	$Q_{d G}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} T^{A} d_{r}\right) \varphi G_{\mu \nu}^{A}$	$Q_{\varphi u}$	$\left(\varphi^{\dagger} i \stackrel{\left.\stackrel{\leftrightarrow}{D}_{\mu} \varphi\right)\left(\bar{u}_{p} \gamma^{\mu} u_{r}\right)}{ }\right.$
$Q_{\varphi W B}$	$\varphi^{\dagger} \tau^{I} \varphi W_{\mu \nu}^{I} B^{\mu \nu}$	$Q_{d W}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} d_{r}\right) \tau^{I} \varphi W_{\mu \nu}^{I}$	$Q_{\varphi d}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \varphi\right)\left(\bar{d}_{p} \gamma^{\mu} d_{r}\right)$
$Q_{\varphi \widetilde{W} B}$	$\varphi^{\dagger} \tau^{I} \varphi \widetilde{W}_{\mu \nu}^{I} B^{\mu \nu}$	$Q_{d B}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} d_{r}\right) \varphi B_{\mu \nu}$	$Q_{\varphi u d}$	$i\left(\widetilde{\varphi}^{\dagger} D_{\mu} \varphi\right)\left(\bar{u}_{p} \gamma^{\mu} d_{r}\right)$

$(\bar{L} L)(\bar{L} L)$		$(\bar{R} R)(\bar{R} R)$		$(\bar{L} L)(\bar{R} R)$	
$Q_{l l}$	$\left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{l}_{s} \gamma^{\mu} l_{t}\right)$	$Q_{e e}$	$\left(\bar{e}_{p} \gamma_{\mu} e_{r}\right)\left(\bar{e}_{s} \gamma^{\mu} e_{t}\right)$	$Q_{l e}$	$\left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{e}_{s} \gamma^{\mu} e_{t}\right)$
$Q_{q q}^{(1)}$	$\left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} q_{t}\right)$	$Q_{u u}$	$\left(\bar{u}_{p} \gamma_{\mu} u_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right)$	$Q_{l u}$	$\left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right)$
$Q_{q q}^{(3)}$	$\left(\bar{q}_{p} \gamma_{\mu} \tau^{I} q_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} \tau^{I} q_{t}\right)$	$Q_{d d}$	$\left(\bar{d}_{p} \gamma_{\mu} d_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right)$	$Q_{l d}$	$\left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right)$
$Q_{l q}^{(1)}$	$\left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} q_{t}\right)$	$Q_{\text {eu }}$	$\left(\bar{e}_{p} \gamma_{\mu} e_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right)$	$Q_{q e}$	$\left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{e}_{s} \gamma^{\mu} e_{t}\right)$
$Q_{l q}^{(3)}$	$\left(\bar{l}_{p} \gamma_{\mu} \tau^{I} l_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} \tau^{I} q_{t}\right)$	$Q_{\text {ed }}$	$\left(\bar{e}_{p} \gamma_{\mu} e_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right)$	$Q_{q u}^{(1)}$	$\left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right)$
		$Q_{u d}^{(1)}$	$\left(\bar{u}_{p} \gamma_{\mu} u_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right)$	$Q_{q u}^{(8)}$	$\left(\bar{q}_{p} \gamma_{\mu} T^{A} q_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} T^{A} u_{t}\right)$
		$Q_{u d}^{(8)}$	$\left(\bar{u}_{p} \gamma_{\mu} T^{A} u_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} T^{A} d_{t}\right)$	$Q_{q d}^{(1)}$ $Q_{q d}^{(8)}$	$\begin{gathered} \left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right) \\ \left(\bar{q}_{p} \gamma_{\mu} T^{A} q_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} T^{A} d_{t}\right) \end{gathered}$
$(\bar{L} R)(\bar{R} L)$ and $(\bar{L} R)(\bar{L} R)$		B-violating			
$Q_{l e d q}$	$\left(\bar{l}_{p}^{j} e_{r}\right)\left(\bar{d}_{s} q_{t}^{j}\right)$	$Q_{\text {d }}$	$\varepsilon^{\alpha \beta \gamma} \varepsilon_{j k}\left[\left(d^{\alpha}\right)\right.$	u_{r}^{β}	$\left.\left[q_{s}^{\gamma j}\right)^{T} C l_{t}^{k}\right]$
$Q_{\text {quqd }}^{(1)}$	$\left(\bar{q}_{p}^{j} u_{r}\right) \varepsilon_{j k}\left(\bar{q}_{s}^{k} d_{t}\right)$	$Q_{q q u}$	$\varepsilon^{\alpha \beta \gamma} \varepsilon_{j k}\left[\left(q_{p}^{\alpha}\right)^{\text {a }}\right.$	$C q_{r}^{\beta k}$	$\left[\left(u_{s}^{\gamma}\right)^{T} C e_{t}\right]$
$Q_{q u q d}^{(8)}$	$\left(\bar{q}_{p}^{j} T^{A} u_{r}\right) \varepsilon_{j k}\left(\bar{q}_{s}^{k} T^{A} d_{t}\right)$	$Q_{q q q}^{(1)}$	$\varepsilon^{\alpha \beta \gamma} \varepsilon_{j k} \varepsilon_{m n}\left[\left(q_{p}^{\alpha}\right)\right.$	$)^{T} C$	$\left[\left(q_{s}^{\gamma m}\right)^{T} C l_{t}^{n}\right]$
$Q_{\text {lequ }}^{(1)}$	$\left(\bar{l}_{p}^{j} e_{r}\right) \varepsilon_{j k}\left(\bar{q}_{s}^{k} u_{t}\right)$	$Q_{q q q}^{(3)}$	$\varepsilon^{\alpha \beta \gamma}\left(\tau^{I} \varepsilon\right)_{j k}\left(\tau^{I} \varepsilon\right)_{m n}$	$\left(q_{p}^{\alpha j}\right)^{T}$	$\left.C q_{r}^{\beta k}\right]\left[\left(q_{s}^{\gamma m}\right)^{T} C l_{t}^{n}\right]$
$Q_{\text {lequ }}^{(3)}$	$\left(\bar{l}_{p}^{j} \sigma_{\mu \nu} e_{r}\right) \varepsilon_{j k}\left(\bar{q}_{s}^{k} \sigma^{\mu \nu} u_{t}\right)$	$Q_{d u u}$	$\varepsilon^{\alpha \beta \gamma}\left[\left(d_{p}^{\alpha}\right)\right.$	$\left.\mathrm{Cu}_{r}^{\beta}\right]$	$\left[\left(u_{s}^{\gamma}\right)^{T} C e_{t}\right]$

Which operators are relevant for VBS?

1. Identify all the terms that can contribute
(a) corrections to SM diagrams: TGC / QGC, hVV, Vff, $\delta \Gamma_{Z, W, h}, \delta m_{W}$, (gqq)

(b) BSM vertices that give new diagrams: VVff, Vhff, ffff ...

2. Verify which are phenomenologically relevant. Depends on:

- symmetries assumed on the Lagrangian (CP, flavor)
- signal selection cuts
- complementary constraints?

Which operators are relevant for VBS?

1. Identify all the terms that can contribute
(a) corrections to SM diagrams: TGC / QGC, hVV, Vff, $\delta \Gamma_{Z, W, h}, \delta m_{W}$, (gqq)

(b) BSM vertices that give new diagrams: VVff, Vhff, ffff ...

2. Verify which are phenomenologically relevant. Depends on:

- symmetries assumed on the Lagrangian (CP, flavor)
- signal selection cuts
- complementary constraints?

VBS with the Warsaw basis - general case

corrections to SM diagrams
Gzadkowski,Iskrzynski,Misiak,Rosiek 1008.4884

X^{3}		φ^{6} and $\varphi^{4} D^{2}$		$\psi^{2} \varphi^{3}$	
Q_{G}	$f^{A B C} G_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu}$	Q_{φ}	$\left(\varphi^{\dagger} \varphi\right)^{3}$	$Q_{e \varphi}$	$\left(\varphi^{\dagger} \varphi\right)\left(\bar{l}_{p} e_{r} \varphi\right)$
$Q_{\tilde{G}}$	$f^{A B C} \widetilde{G}_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu}$	$Q_{\varphi \square}$	$\left(\varphi^{\dagger} \varphi\right) \square\left(\varphi^{\dagger} \varphi\right)$	$Q_{u \varphi}$	$\left(\varphi^{\dagger} \varphi\right)\left(\bar{q}_{p} u_{r} \widetilde{\varphi}\right)$
$\begin{aligned} & Q_{W} \\ & Q_{\widetilde{W}} \\ & \hline \end{aligned}$	$\begin{aligned} & \varepsilon^{I J K} W_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu} \\ & \varepsilon^{I J K} \widetilde{W}_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu} \end{aligned}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger} D^{\mu} \varphi\right)^{\star}\left(\varphi^{\dagger} D_{\mu} \varphi\right)$	$Q_{d \varphi}$	$\left(\varphi^{\dagger} \varphi\right)\left(\bar{q}_{p} d_{r} \varphi\right)$
$X^{2} \varphi^{2}$		$\psi^{2} X \varphi$		$\psi^{2} \varphi^{2} D$	
$Q_{\varphi G}$	$\varphi^{\dagger} \varphi G_{\mu \nu}^{A} G^{A \mu \nu}$	$Q_{\text {eW }}$	$\left(\bar{l}_{p} \sigma^{\mu \nu} e_{r}\right) \tau^{I} \varphi W_{\mu \nu}^{I}$	$Q_{\varphi l}^{(1)}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \varphi\right)\left(\bar{l}_{p} \gamma^{\mu} l_{r}\right)$
$Q_{\varphi \tilde{G}}$	$\varphi^{\dagger} \varphi \widetilde{G}_{\mu \nu}^{A} G^{A \mu \nu}$	$Q_{e B}$	$\left(\bar{l}_{p} \sigma^{\mu \nu} e_{r}\right) \varphi B_{\mu \nu}$	$Q_{\varphi l}^{(3)}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D_{\mu}^{I}} \varphi\right)\left(\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r}\right)$
$Q_{\varphi W}$	$\varphi^{\dagger} \varphi W_{\mu \nu}^{I} W^{I \mu \nu}$	$Q_{u G}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} T^{A} u_{r}\right) \widetilde{\varphi} G_{\mu \nu}^{A}$	$Q_{\varphi e}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \varphi\right)\left(\bar{e}_{p} \gamma^{\mu} e_{r}\right)$
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger} \varphi \widetilde{W}_{\mu \nu}^{I} W^{I \mu \nu}$	$Q_{u W}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} u_{r}\right) \tau^{I} \widetilde{\varphi} W_{\mu \nu}^{I}$	$Q_{\varphi q}^{(1)}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \varphi\right)\left(\bar{q}_{p} \gamma^{\mu} q_{r}\right)$
$Q_{\varphi B}$	$\varphi^{\dagger} \varphi B_{\mu \nu} B^{\mu \nu}$	$Q_{u B}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} u_{r}\right) \widetilde{\varphi} B_{\mu \nu}$	$Q_{\varphi q}^{(3)}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D_{\mu}^{I}} \varphi\right)\left(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r}\right)$
$Q_{\varphi \tilde{B}}$	$\varphi^{\dagger} \varphi \widetilde{B}_{\mu \nu} B^{\mu \nu}$	$Q_{d G}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} T^{A} d_{r}\right) \varphi G_{\mu \nu}^{A}$	$Q_{\varphi u}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \varphi\right)\left(\bar{u}_{p} \gamma^{\mu} u_{r}\right)$
$Q_{\varphi W B}$	$\varphi^{\dagger} \tau^{I} \varphi W_{\mu \nu}^{I} B^{\mu \nu}$	$Q_{d W}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} d_{r}\right) \tau^{I} \varphi W_{\mu \nu}^{I}$	$Q_{\varphi d}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \varphi\right)\left(\bar{d}_{p} \gamma^{\mu} d_{r}\right)$
$Q_{\varphi \widetilde{W} B}$	$\varphi^{\dagger} \tau^{I} \varphi \widetilde{W}_{\mu \nu}^{I} B^{\mu \nu}$	$Q_{d B}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} d_{r}\right) \varphi B_{\mu \nu}$	$Q_{\varphi u d}$	$i\left(\widetilde{\varphi}^{\dagger} D_{\mu} \varphi\right)\left(\bar{u}_{p} \gamma^{\mu} d_{r}\right)$

VBS with the Warsaw basis - general case

contributions to new diagrams
Gzadkowski,Iskrzynski,Misiak,Rosiek 1008.4884

X^{3}		φ^{6} and $\varphi^{4} D^{2}$		$\psi^{2} \varphi^{3}$	
$\begin{gathered} Q_{G} \\ Q_{\widetilde{G}} \\ Q_{W} \\ Q_{\widetilde{W}} \end{gathered}$	$\begin{gathered} f^{A B C} G_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu} \\ f^{A B C} \widetilde{G}_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu} \\ \varepsilon^{I J K} W_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu} \\ \varepsilon^{I J K} \widetilde{W}_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu} \end{gathered}$	$\begin{gathered} Q_{\varphi} \\ Q_{\varphi \square} \\ Q_{\varphi D} \end{gathered}$	$\begin{gathered} \left(\varphi^{\dagger} \varphi\right)^{3} \\ \left(\varphi^{\dagger} \varphi\right) \square\left(\varphi^{\dagger} \varphi\right) \\ \left(\varphi^{\dagger} D^{\mu} \varphi\right)^{\star}\left(\varphi^{\dagger} D_{\mu} \varphi\right) \end{gathered}$	$Q_{e \varphi}$ $Q_{u \varphi}$ $Q_{d \varphi}$	$\begin{aligned} & \left(\varphi^{\dagger} \varphi\right)\left(\bar{l}_{p} e_{r} \varphi\right) \\ & \left(\varphi^{\dagger} \varphi\right)\left(\bar{q}_{p} u_{r} \widetilde{\varphi}\right) \\ & \left(\varphi^{\dagger} \varphi\right)\left(\bar{q}_{p} d_{r} \varphi\right) \end{aligned}$
	$X^{2} \varphi^{2}$		$\psi^{2} X \varphi$		$\psi^{2} \varphi^{2} D$
$\begin{gathered} Q_{\varphi G} \\ Q_{\varphi \widetilde{G}} \\ Q_{\varphi W} \\ Q_{\varphi \widetilde{W}} \\ Q_{\varphi B} \\ Q_{\varphi \widetilde{B}} \\ Q_{\varphi W B} \\ Q_{\varphi \widetilde{W} B} \end{gathered}$	$\begin{gathered} \hline \varphi^{\dagger} \varphi G_{\mu \nu}^{A} G^{A \mu \nu} \\ \varphi^{\dagger} \varphi \widetilde{G}_{\mu \nu}^{A} G^{A \mu \nu} \\ \varphi^{\dagger} \varphi W_{\mu \nu}^{I} W^{I \mu \nu} \\ \varphi^{\dagger} \varphi \widetilde{W}_{\mu \nu}^{I} W^{I \mu \nu} \\ \varphi^{\dagger} \varphi B_{\mu \nu} B^{\mu \nu} \\ \varphi^{\dagger} \varphi \widetilde{B}_{\mu \nu} B^{\mu \nu} \\ \varphi^{\dagger} \tau^{I} \varphi W_{\mu \nu}^{I} B^{\mu \nu} \\ \varphi^{\dagger} \tau^{I} \varphi \widetilde{W}_{\mu \nu}^{I} B^{\mu \nu} \\ \hline \end{gathered}$	$\begin{gathered} \hline Q_{e W} \\ Q_{e B} \\ Q_{u G} \\ Q_{u W} \\ Q_{u B} \\ Q_{d G} \\ Q_{d W} \\ Q_{d B} \end{gathered}$	$\begin{gathered} \left(\bar{l}_{p} \sigma^{\mu \nu} e_{r}\right) \tau^{I} \varphi W_{\mu \nu}^{I} \\ \left(\bar{l}_{p} \sigma^{\mu \nu} e_{r}\right) \varphi B_{\mu \nu} \\ \left(\bar{q}_{p} \sigma^{\mu \nu} T^{A} u_{r}\right) \widetilde{\varphi} G_{\mu \nu}^{A} \\ \left(\bar{q}_{p} \sigma^{\mu \nu} u_{r}\right) \tau^{I} \widetilde{\varphi} W_{\mu \nu}^{I} \\ \left(\bar{q}_{p} \sigma^{\mu \nu} u_{r}\right) \widetilde{\varphi} B_{\mu \nu} \\ \left(\bar{q}_{p} \sigma^{\mu \nu} T^{A} d_{r}\right) \varphi G_{\mu \nu}^{A} \\ \left(\bar{q}_{p} \sigma^{\mu \nu} d_{r}\right) \tau^{I} \varphi W_{\mu \nu}^{I} \\ \left(\bar{q}_{p} \sigma^{\mu \nu} d_{r}\right) \varphi B_{\mu \nu} \\ \hline \end{gathered}$	$\begin{aligned} & \hline Q_{\varphi l}^{(1)} \\ & Q_{\varphi l}^{(3)} \\ & Q_{\varphi e} \\ & Q_{\varphi q}^{(1)} \\ & Q_{\varphi q}^{(3)} \\ & Q_{\varphi u} \\ & Q_{\varphi d} \\ & Q_{\varphi u d} \\ & \hline \end{aligned}$	$\begin{gathered} \left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \varphi\right)\left(\bar{l}_{p} \gamma^{\mu} l_{r}\right) \\ \left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu}^{I} \varphi\right)\left(\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r}\right) \\ \left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \varphi\right)\left(\bar{e}_{p} \gamma^{\mu} e_{r}\right) \\ \left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \varphi\right)\left(\bar{q}_{p} \gamma^{\mu} q_{r}\right) \\ \left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D_{\mu}^{I}} \varphi\right)\left(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r}\right) \\ \left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \varphi\right)\left(\bar{u}_{p} \gamma^{\mu} u_{r}\right) \\ \left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \varphi\right)\left(\bar{d}_{p} \gamma^{\mu} d_{r}\right) \\ i\left(\widetilde{\varphi}^{\dagger} D_{\mu} \varphi\right)\left(\bar{u}_{p} \gamma^{\mu} d_{r}\right) \\ \hline \end{gathered}$

VBS with the Warsaw basis - general case

corrections to SM diagrams
Gzadkowski,Iskrzynski,Misiak,Rosiek 1008.4884

$(\bar{L} L)(\bar{L} L)$		$(\bar{R} R)(\bar{R} R)$		$(\bar{L} L)(\bar{R} R)$	
$Q_{l l}$	$\left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{l}_{s} \gamma^{\mu} l_{t}\right)$	$Q_{e e}$	$\left(\bar{e}_{p} \gamma_{\mu} e_{r}\right)\left(\bar{e}_{s} \gamma^{\mu} e_{t}\right)$	$Q_{l e}$	$\left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{e}_{s} \gamma^{\mu} e_{t}\right)$
$Q_{q q}^{(1)}$	$\left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} q_{t}\right)$	$Q_{u u}$	$\left(\bar{u}_{p} \gamma_{\mu} u_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right)$	$Q_{l u}$	$\left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right)$
$Q_{q q}^{(3)}$	$\left(\bar{q}_{p} \gamma_{\mu} \tau^{I} q_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} \tau^{I} q_{t}\right)$	$Q_{d d}$	$\left(\bar{d}_{p} \gamma_{\mu} d_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right)$	$Q_{l d}$	$\left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right)$
$Q_{l q}^{(1)}$	$\left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} q_{t}\right)$	$Q_{e u}$	$\left(\bar{e}_{p} \gamma_{\mu} e_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right)$	$Q_{q e}$	$\left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{e}_{s} \gamma^{\mu} e_{t}\right)$
$Q_{l q}^{(3)}$	$\left(\bar{l}_{p} \gamma_{\mu} \tau^{I} l_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} \tau^{I} q_{t}\right)$	$Q_{e d}$	$\left(\bar{e}_{p} \gamma_{\mu} e_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right)$	$Q_{q u}^{(1)}$	$\left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right)$
		$Q_{u d}^{(1)}$	$\left(\bar{u}_{p} \gamma_{\mu} u_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right)$	$Q_{q u}^{(8)}$	$\left(\bar{q}_{p} \gamma_{\mu} T^{A} q_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} T^{A} u_{t}\right)$
		$Q_{u d}^{(8)}$	$\left(\bar{u}_{p} \gamma_{\mu} T^{A} u_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} T^{A} d_{t}\right)$	$\begin{aligned} & Q_{q d}^{(1)} \\ & Q_{q d}^{(8)} \\ & \hline \hline \end{aligned}$	$\begin{gathered} \left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right) \\ \left(\bar{q}_{p} \gamma_{\mu} T^{A} q_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} T^{A} d_{t}\right) \end{gathered}$
$(\bar{L} R)(\bar{R} L)$ and $(\bar{L} R)(\bar{L} R)$		B-violating			
$Q_{l e d q}$	$\left(\bar{l}_{p}^{j} e_{r}\right)\left(\bar{d}_{s} q_{t}^{j}\right)$	$Q_{d u q}$	$\varepsilon^{\alpha \beta \gamma} \varepsilon_{j k}\left[\left(d^{\alpha}\right)\right.$	u_{r}	$\left.\left(q_{s}^{\gamma j}\right)^{T} C l_{t}^{k}\right]$
$Q_{\text {quqd }}^{(1)}$	$\left(\bar{q}_{p}^{j} u_{r}\right) \varepsilon_{j k}\left(\bar{q}_{s}^{k} d_{t}\right)$	$Q_{q q u}$	$\varepsilon^{\alpha \beta \gamma} \varepsilon_{j k}\left[\left(q_{p}^{\alpha j}\right.\right.$		$\left[\left(u_{s}^{\gamma}\right)^{T} C e_{t}\right]$
$Q_{q u q d}^{(8)}$	$\left(\bar{q}_{p}^{j} T^{A} u_{r}\right) \varepsilon_{j k}\left(\bar{q}_{s}^{k} T^{A} d_{t}\right)$	$Q_{q q q}^{(1)}$	$\varepsilon^{\alpha \beta \gamma} \varepsilon_{j k} \varepsilon_{m n}\left[\left(q_{p}^{\text {aj}}\right.\right.$	$)^{T} C$	$\left[\left(q_{s}^{\gamma m}\right)^{T} C l_{t}^{n}\right]$
$Q_{\text {lequ }}^{(1)}$	$\left(\bar{l}_{p}^{j} e_{r}\right) \varepsilon_{j k}\left(\bar{q}_{s}^{k} u_{t}\right)$	$Q_{q q q}^{(3)}$	$\varepsilon^{\alpha \beta \gamma}\left(\tau^{I} \varepsilon\right)_{j k}\left(\tau^{I} \varepsilon\right)_{m}$	$\left(q_{p}^{\alpha j}\right)$	$\left.C q_{r}^{\beta k}\right]\left[\left(q_{s}^{\gamma m}\right)^{T} C l_{t}^{n}\right]$
$Q_{\text {lequ }}^{(3)}$	$\left(\bar{l}_{p}^{j} \sigma_{\mu \nu} e_{r}\right) \varepsilon_{j k}\left(\bar{q}_{s}^{k} \sigma^{\mu \nu} u_{t}\right)$	$Q_{\text {duu }}$	$\varepsilon^{\alpha \beta \gamma}\left[\left(d_{p}^{\alpha}\right)\right.$	$\left.u_{r}^{\beta}\right]$	$\left[\left(u_{s}^{\gamma}\right)^{T} C e_{t}\right]$

VBS with the Warsaw basis - general case

contributions to new diagrams
Gzadkowski,Iskrzynski,Misiak,Rosiek 1008.4884

$(\bar{L} L)(\bar{L} L)$		$(\bar{R} R)(\bar{R} R)$		$(\bar{L} L)(\bar{R} R)$	
$\begin{aligned} & Q_{q q}^{(1)} \\ & Q_{q q}^{(3)} \\ & Q_{l q}^{(1)} \\ & Q_{l q}^{(3)} \end{aligned}$	$\begin{gathered} \left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{l}_{s} \gamma^{\mu} l_{t}\right) \\ \left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} q_{t}\right) \\ \left(\bar{q}_{p} \gamma_{\mu} I^{I} q_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} \tau^{I} q_{t}\right) \\ \left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} q_{t}\right) \\ \left(\bar{l}_{p} \gamma_{\mu} \tau^{I} l_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} \tau^{I} q_{t}\right) \end{gathered}$	$Q_{e e}$$Q_{u u}$$Q_{d d}$$Q_{e u}$$Q_{e d}$$Q_{u d}^{(1)}$$Q_{u d}^{(8)}$	$\begin{gathered} \hline\left(\bar{e}_{p} \gamma_{\mu} e_{r}\right)\left(\bar{e}_{s} \gamma^{\mu} e_{t}\right) \\ \left(\bar{u}_{p} \gamma_{\mu} u_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right) \\ \left(\bar{d}_{p} \gamma_{\mu} d_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right) \\ \left(\bar{e}_{p} \gamma_{\mu} e_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right) \\ \left(\bar{e}_{p} \gamma_{\mu} e_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right) \\ \left(\bar{u}_{p} \gamma_{\mu} u_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right) \\ \left(\bar{u}_{p} \gamma_{\mu} T^{A} u_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} T^{A} d_{t}\right) \end{gathered}$	$Q_{l e}$	$\left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{e}_{s} \gamma^{\mu} e_{t}\right)$
				$Q_{l u}$	$\left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right)$
				$Q_{l d}$	$\left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right)$
				$Q_{q e}$	$\left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{e}_{s} \gamma^{\mu} e_{t}\right)$
				$Q_{q u}^{(1)}$	$\left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right)$
				$Q_{q u}^{(8)}$	$\left(\bar{q}_{p} \gamma_{\mu} T^{A} q_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} T^{A} u_{t}\right)$
				$Q_{q d}^{(1)}$ $Q_{q d}^{(8)}$	$\begin{gathered} \left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right) \\ \left(\bar{q}_{p} \gamma_{\mu} T^{A} q_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} T^{A} d_{t}\right) \end{gathered}$
$(\bar{L} R)(\bar{R} L)$ and $(\bar{L} R)(\bar{L} R)$		B-violating			
$Q_{l e d q}$	$\left(\bar{l}_{p}^{j} e_{r}\right)\left(\bar{d}_{s} q_{t}^{j}\right)$	$Q_{\text {d }}$	$\varepsilon^{\alpha \beta \gamma} \varepsilon_{j k}\left[\left(d^{\alpha}\right.\right.$	C	$\left.\left[q_{s}^{\gamma j}\right)^{T} C l_{t}^{k}\right]$
$Q_{q u q d}^{(1)}$	$\left(\bar{q}_{p}^{j} u_{r}\right) \varepsilon_{j k}\left(\bar{q}_{s}^{k} d_{t}\right)$	$Q_{q q u}$	$\varepsilon^{\alpha \beta \gamma} \varepsilon_{j k}\left[\left(q_{p}^{\alpha}\right)^{\text {a }}\right.$	${ }^{T} C q_{r}$	$\left[\left(u_{s}^{\gamma}\right)^{T} C e_{t}\right]$
$Q_{q u q d}^{(8)}$	$\left(\bar{q}_{p}^{j} T^{A} u_{r}\right) \varepsilon_{j k}\left(\bar{q}_{s}^{k} T^{A} d_{t}\right)$	$Q_{q q q}^{(1)}$	$\varepsilon^{\alpha \beta \gamma} \varepsilon_{j k} \varepsilon_{m n}\left[\left({ }_{\text {c }}\right.\right.$	${ }^{T} C$] $\left[\left(q_{s}^{\gamma m}\right)^{T} C l_{t}^{n}\right]$
$Q_{\text {lequ }}^{(1)}$	$\left(\bar{l}_{p}^{j} e_{r}\right) \varepsilon_{j k}\left(\bar{q}_{s}^{k} u_{t}\right)$	$Q_{q q q}^{(3)}$	$\varepsilon^{\alpha \beta \gamma}\left(\tau^{I} \varepsilon\right)_{j k}\left(\tau^{I} \varepsilon\right)_{m n}$	$\left[\left(q_{p}^{\alpha j}\right)\right.$	$\left.C q_{r}^{\beta k}\right]\left[\left(q_{s}^{\gamma m}\right)^{T} C l_{t}^{n}\right]$
$Q_{\text {lequ }}^{(3)}$	$\left(\bar{l}_{p}^{j} \sigma_{\mu \nu} e_{r}\right) \varepsilon_{j k}\left(\bar{q}_{s}^{k} \sigma^{\mu \nu} u_{t}\right)$	$Q_{d u u}$	$\varepsilon^{\alpha \beta \gamma}\left[\left(d_{p}^{\alpha}\right)\right.$	$\left.C u_{r}^{\beta}\right]$	$\left[\left(u_{s}^{\gamma}\right)^{T} C e_{t}\right]$

Summary - most general case

Corrections to SM couplings/propagators

$$
\begin{aligned}
& \operatorname{Vff}\left(\rightarrow \Gamma_{W}, \Gamma_{Z}\right) \mid \mathcal{Q}_{H D} \mathcal{Q}_{H W B} \mathcal{Q}_{\| I} \mathcal{Q}_{H I}^{3} \mathcal{Q}_{H I}^{1} \mathcal{Q}_{H q}^{3} \mathcal{Q}_{H q}^{1} \mathcal{Q}_{H e} \mathcal{Q}_{H u} \mathcal{Q}_{H d} \mathcal{Q}_{H u d} \\
& \text { Vff (dipole) } \mathcal{Q}_{e W} \mathcal{Q}_{e B} \mathcal{Q}_{u W} \mathcal{Q}_{d B} \mathcal{Q}_{d W} \mathcal{Q}_{d B}\left(\mathcal{Q}_{u G}, \mathcal{Q}_{d G}\right) \\
& \text { TGC/QGC } \mathcal{Q}_{H D} \mathcal{Q}_{H w B} \mathcal{Q}_{\| \prime} \mathcal{Q}_{H /}^{3} \mathcal{Q}_{w} \mathcal{Q}_{\tilde{W}} \mathcal{Q}_{H \tilde{w} B} \\
& \mathrm{hVV} \mathcal{Q}_{H D} \mathcal{Q}_{H \omega B} \mathcal{Q}_{\|} \mathcal{Q}_{H /}^{3} \mathcal{Q}_{H W} \mathcal{Q}_{H \tilde{W}} \mathcal{Q}_{H B} \mathcal{Q}_{H \tilde{B}} \mathcal{Q}_{H \tilde{W} B} \mathcal{Q}_{H \square} \\
& m_{W} \mathcal{Q}_{\text {нD }} \mathcal{Q}_{\text {ншв }} \mathcal{Q}_{H I}^{3} \mathcal{Q}_{\|} \\
& \Gamma_{h} \mathcal{Q}_{H D} \mathcal{Q}_{\| \prime} \mathcal{Q}_{H \mid}^{3} \mathcal{Q}_{e H} \mathcal{Q}_{d H} \mathcal{Q}_{u H} \mathcal{Q}_{H}
\end{aligned}
$$

Couplings giving new diagrams

| VVff | $\mathcal{Q}_{e W} \mathcal{Q}_{e B} \mathcal{Q}_{u W} \mathcal{Q}_{d B} \mathcal{Q}_{d W} \mathcal{Q}_{d B} \mathcal{Q}_{\\| \prime}$ |
| ---: | :--- | :--- | :--- | :--- |
| Vhff | $\mathcal{Q}_{H \mid}^{3} \mathcal{Q}_{H \mid}^{1} \mathcal{Q}_{H q}^{3} \mathcal{Q}_{H q}^{1} \mathcal{Q}_{H e} \mathcal{Q}_{H u} \mathcal{Q}_{H d} \mathcal{Q}_{H u d}$ |
| 4-fermions | \ldots |

28 (30) operators and 254 (290) parameters counting phases and flavor indices + four-fermion operators!

Reducing the set - symmetries

X^{3}		φ^{6} and $\varphi^{4} D^{2}$		$\psi^{2} \varphi^{3}$	
Q_{G} $Q_{\tilde{G}}$ Q_{W} $Q_{\widetilde{W}}$	$f^{A B C} G_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu}$ $f^{A B C} \widetilde{G}_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu}$ $\varepsilon^{I J K} W_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu}$ $\varepsilon^{I J K} \widetilde{W}_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu}$	$\begin{gathered} Q_{\varphi} \\ Q_{\varphi \square} \\ Q_{\varphi D} \end{gathered}$	$\begin{gathered} \left(\varphi^{\dagger} \varphi\right)^{3} \\ \left(\varphi^{\dagger} \varphi\right) \square\left(\varphi^{\dagger} \varphi\right) \\ \left(\varphi^{\dagger} D^{\mu} \varphi\right)^{\star}\left(\varphi^{\dagger} D_{\mu} \varphi\right) \end{gathered}$	$Q_{e \varphi}$ $Q_{u \varphi}$ $Q_{d \varphi}$	$\begin{aligned} & \left(\varphi^{\dagger} \varphi\right)\left(\bar{l}_{p} e_{r} \varphi\right) \\ & \left(\varphi^{\dagger} \varphi\right)\left(\bar{q}_{p} u_{r} \widetilde{\varphi}\right) \\ & \left(\varphi^{\dagger} \varphi\right)\left(\bar{q}_{p} d_{r} \varphi\right) \end{aligned}$
	$X^{2} \varphi^{2}$		$\psi^{2} X \varphi$		$\psi^{2} \varphi^{2} D$
$\begin{gathered} Q_{\varphi G} \\ Q_{\varphi \widetilde{G}} \\ Q_{\varphi W} \\ Q_{\varphi \widetilde{W}} \\ Q_{\varphi B} \\ Q_{\varphi \widetilde{B}} \\ Q_{\varphi W B} \\ Q_{\varphi \widetilde{W} B} \end{gathered}$	$\begin{gathered} \varphi^{\dagger} \varphi G_{\mu \nu}^{A} G^{A \mu \nu} \\ \varphi^{\dagger} \varphi \widetilde{G}_{\mu \nu}^{A} G^{A \mu \nu} \\ \varphi^{\dagger} \varphi W_{\mu \nu}^{I} W^{I \mu \nu} \\ \varphi^{\dagger} \varphi \widetilde{W}_{\mu \nu}^{I} W^{I \mu \nu} \\ \varphi^{\dagger} \varphi B_{\mu \nu} B^{\mu \nu} \\ \varphi^{\dagger} \varphi \widetilde{B}_{\mu \nu} B^{\mu \nu} \\ \varphi^{\dagger} \tau^{I} \varphi W_{\mu \nu}^{I} B^{\mu \nu} \\ \varphi^{\dagger} \tau^{I} \varphi \widetilde{W}_{\mu \nu}^{I} B^{\mu \nu} \\ \hline \end{gathered}$	$\begin{gathered} Q_{e W} \\ Q_{e B} \\ Q_{u G} \\ Q_{u W} \\ Q_{u B} \\ Q_{d G} \\ Q_{d W} \\ Q_{d B} \end{gathered}$	$\begin{gathered} \left(\bar{l}_{p} \sigma^{\mu \nu} e_{r}\right) \tau^{I} \varphi W_{\mu \nu}^{I} \\ \left(\bar{l}_{p} \sigma^{\mu \nu} e_{r}\right) \varphi B_{\mu \nu} \\ \left(\bar{q}_{p} \sigma^{\mu \nu} T^{A} u_{r}\right) \widetilde{\varphi} G_{\mu \nu}^{A} \\ \left(\bar{q}_{p} \sigma^{\mu \nu} u_{r}\right) \tau^{I} \widetilde{\varphi} W_{\mu \nu}^{I} \\ \left(\bar{q}_{p} \sigma^{\mu \nu} u_{r}\right) \widetilde{\varphi} B_{\mu \nu} \\ \left(\bar{q}_{p} \sigma^{\mu \nu} T^{A} d_{r}\right) \varphi G_{\mu \nu}^{A} \\ \left(\bar{q}_{p} \sigma^{\mu \nu} d_{r}\right) \tau^{I} \varphi W_{\mu \nu}^{I} \\ \left(\bar{q}_{p} \sigma^{\mu \nu} d_{r}\right) \varphi B_{\mu \nu} \\ \hline \end{gathered}$	$\begin{aligned} & \hline Q_{\varphi l}^{(1)} \\ & Q_{\varphi l}^{(3)} \\ & Q_{\varphi e} \\ & Q_{\varphi \varphi}^{(1)} \\ & Q_{\varphi \varphi}^{(3)} \\ & Q_{\varphi u} \\ & Q_{\varphi d} \\ & Q_{\varphi u d} \\ & \hline \end{aligned}$	$\begin{gathered} \left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D_{\mu}} \varphi\right)\left(\bar{l}_{p} \gamma^{\mu} l_{r}\right) \\ \left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu}^{I} \varphi\right)\left(\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r}\right) \\ \left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D_{\mu}} \varphi\right)\left(\bar{e}_{p} \gamma^{\mu} e_{r}\right) \\ \left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D_{\mu}} \varphi\right)\left(\bar{q}_{p} \gamma^{\mu} q_{r}\right) \\ \left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D_{\mu}^{I}} \varphi\right)\left(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r}\right) \\ \left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \varphi\right)\left(\bar{u}_{p} \gamma^{\mu} u_{r}\right) \\ \left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \varphi\right)\left(\bar{d}_{p} \gamma^{\mu} d_{r}\right) \\ i\left(\widetilde{\varphi}^{\dagger} D_{\mu} \varphi\right)\left(\bar{u}_{p} \gamma^{\mu} d_{r}\right) \\ \hline \end{gathered}$

Reducing the set - symmetries

Assume CP conservation

X^{3}		φ^{6} and $\varphi^{4} D^{2}$		$\psi^{2} \varphi^{3}$	
Q_{G}	$f^{A B C} G_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu}$	Q_{φ}	$\left(\varphi^{\dagger} \varphi\right)^{3}$	$Q_{e \varphi}$	$\left(\varphi^{\dagger} \varphi\right)\left(\bar{l}_{p} e_{r} \varphi\right)$
		$Q_{\varphi \square}$	$\left(\varphi^{\dagger} \varphi\right) \square\left(\varphi^{\dagger} \varphi\right)$	$Q_{u \varphi}$	$\left(\varphi^{\dagger} \varphi\right)\left(\bar{q}_{p} u_{r} \widetilde{\varphi}\right)$
Q_{W}	$\varepsilon^{I J K} W_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger} D^{\mu} \varphi\right)^{\star}\left(\varphi^{\dagger} D_{\mu} \varphi\right)$	$Q_{d \varphi}$	$\left(\varphi^{\dagger} \varphi\right)\left(\bar{q}_{p} d_{r} \varphi\right)$
$X^{2} \varphi^{2}$		$\psi^{2} X \varphi$		$\psi^{2} \varphi^{2} D$	
$Q_{\varphi G}$	$\varphi^{\dagger} \varphi G_{\mu \nu}^{A} G^{A \mu \nu}$	$\begin{aligned} & Q_{e W} \\ & Q_{e B} \end{aligned}$	$\begin{gathered} \left(\bar{l}_{p} \sigma^{\mu \nu} e_{r}\right) \tau^{I} \varphi W_{\mu \nu}^{I} \\ \left(\bar{l}_{p} \sigma^{\mu \nu} e_{r}\right) \varphi B_{\mu \nu} \end{gathered}$	$\begin{aligned} & Q_{\varphi l}^{(1)} \\ & Q_{\varphi l}^{(3)} \end{aligned}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{\left.\stackrel{\leftrightarrow}{\mu}_{\mu} \varphi\right)\left(\bar{l}_{p} \gamma^{\mu} l_{r}\right)}\right.$
					$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D_{\mu}^{I}} \varphi\right)\left(\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r}\right)$
$Q_{\varphi W}$	$\varphi^{\dagger} \varphi W_{\mu \nu}^{I} W^{I \mu \nu}$	$\begin{gathered} Q_{u G} \\ Q_{u W} \end{gathered}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} T^{A} u_{r}\right) \widetilde{\varphi} G_{\mu \nu}^{A}$	$\begin{aligned} & Q_{\varphi e} \\ & Q_{\varphi q}^{(1)} \end{aligned}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \varphi\right)\left(\bar{e}_{p} \gamma^{\mu} e_{r}\right)$
			$\left(\bar{q}_{p} \sigma^{\mu \nu} u_{r}\right) \tau^{I} \widetilde{\varphi} W_{\mu \nu}^{I}$		$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \varphi\right)\left(\bar{q}_{p} \gamma^{\mu} q_{r}\right)$
$Q_{\varphi B}$	$\varphi^{\dagger} \varphi B_{\mu \nu} B^{\mu \nu}$	$Q_{u B}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} u_{r}\right) \widetilde{\varphi} B_{\mu \nu}$	$Q_{\varphi q}^{(3)}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{\stackrel{\leftrightarrow}{\mu}_{\mu}^{I}} \varphi\right)\left(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r}\right)$
		$Q_{d G}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} T^{A} d_{r}\right) \varphi G_{\mu \nu}^{A}$	$Q_{\varphi u}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \varphi\right)\left(\bar{u}_{p} \gamma^{\mu} u_{r}\right)$
$Q_{\varphi W B}$	$\varphi^{\dagger} \tau^{I} \varphi W_{\mu \nu}^{I} B^{\mu \nu}$	$Q_{d W}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} d_{r}\right) \tau^{I} \varphi W_{\mu \nu}^{I}$	$Q_{\varphi d}$	$\left(\varphi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \varphi\right)\left(\bar{d}_{p} \gamma^{\mu} d_{r}\right)$
			$\left(\bar{q}_{p} \sigma^{\mu \nu} d_{r}\right) \varphi B_{\mu \nu}$		$i\left(\widetilde{\varphi}^{\dagger} D_{\mu} \varphi\right)\left(\bar{u}_{p} \gamma^{\mu} d_{r}\right)$

Reducing the set - symmetries

Assume CP conservation + approx. $U(3)^{5}$ flavor sym

Reducing the set - selection cuts

Cuts can help removing (new) diagrams.
Examples:

\rightarrow non-resonant fermion pair

kinematics \neq VBS signal could be removed

4-fermion operators (apart from \mathcal{Q}_{11}) and new diagrams are likely to be negligible in resonant VBS

Simulation studies required to make solid statements

Reducing the set - complementary constraints

Ideal statement: "the operator XX is very constrained from another measurement, so it can be neglected"
it's OK to use this argument to reduce the parameter set (for now)

Reducing the set - complementary constraints

Ideal statement: "the operator XX is very constrained from another measurement, so it can be neglected"
it's OK to use this argument to reduce the parameter set (for now)
My skepticism: this statement is basis dependent as the EFT is not intuitive

Reducing the set - complementary constraints

Ideal statement: "the operator XX is very constrained from another measurement, so it can be neglected"
it's OK to use this argument to reduce the parameter set (for now)
My skepticism: this statement is basis dependent as the EFT is not intuitive
suppose I have a theory that produces $\left(D^{\mu} W_{\mu \nu}^{i}\right)\left(i \Phi^{\dagger} \overleftrightarrow{D^{i \nu}} \Phi\right)$
\Rightarrow deviations in processes with TGC/QGC

In the Warsaw basis it corresponds to a combination of $C_{H \mathrm{~L}}, C_{H q}^{(3)}, C_{H 1}^{(3)}, C_{H}+$ others

$$
\begin{aligned}
& \left(D^{\mu} W_{\mu \nu}^{i}\right)\left(i \Phi^{\dagger} \overleftrightarrow{D^{\prime \prime}} \Phi\right)=g\left(2 \Phi^{\dagger} \Phi\left(D_{\mu} \Phi^{\dagger} D^{\mu} \Phi\right)+\frac{\mathcal{Q}_{H a}}{2}+\frac{\mathcal{Q}_{H q}^{(3)}+\mathcal{Q}_{H I}^{(3)}}{2}\right) \\
& \text { Grzadkowski et al: } \quad\left(\varphi^{\dagger} \varphi\right)\left[\left(D_{\mu} \varphi\right)^{\dagger}\left(D^{\mu} \varphi\right)\right] \stackrel{(5.1)}{=} \frac{1}{2}\left(\varphi^{\dagger} \varphi\right) \square\left(\varphi^{\dagger} \varphi\right)+\psi^{2} \varphi^{3}+\varphi^{6}+m^{2} \varphi^{4}+E .
\end{aligned}
$$

LEP measurements tell $C_{H q}^{(3)}, C_{H I}^{(3)} \ll 1 \rightarrow$ I remove them from the fit \rightarrow no parameter left to account for the deviation in processes with TGC/QGC!

Reducing the set - complementary constraints

Ideal statement: "the operator XX is very constrained from another measurement, so it can be neglected"
it's OK to use this argument to reduce the parameter set (for now)
My skepticism: this statement is basis dependent as the EFT is not intuitive

What this means:

- the operators in a basis don't capture only new physics contributing directly to them, but also to other invariants that were removed from the basis
- their physical interpretation is not obvious! (\sim no control on the structures that were removed)
- to my knowledge it is not possible to select a basis that "minimizes" this
- reducing the parameter set "intuitively" is ok as long as there is no deviation. If anything appears it is necessary to include all to interpret it correctly

Operators relevant for VBS - minimal set

imposing $C P+U(3)^{5}$ flavor symmetry, neglecting contributions $\propto y_{f}, f \neq b, t$ and assuming non-standard diagrams give negligible impact

Corrections to SM couplings/propagators

$$
\begin{aligned}
& \mathcal{Q}_{H D}=\left(H^{\dagger} D_{\mu} H\right)^{*}\left(H^{\dagger} D^{\mu} H\right) \quad \mathcal{Q}_{H \|}^{(1)}=\left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H\right)\left(\overline{\gamma^{\mu}} l\right) \\
& \mathcal{Q}_{H \circ}=\left(H^{\dagger} H\right)\left(H^{\dagger} \circ H\right) \\
& \mathcal{Q}_{W}=\varepsilon_{i j k} W_{\mu \nu}^{i} W^{j \nu \rho} W_{\rho}^{k \mu} \\
& \mathcal{Q}_{H B}=\left(H^{\dagger} H\right) B_{\mu \nu} B^{\mu \nu} \\
& \mathcal{Q}_{H W}=\left(\boldsymbol{H}^{\dagger} \boldsymbol{H}\right) W_{\mu \nu}^{i} W^{i \mu \nu} \\
& \mathcal{Q}_{H W B}=\left(H^{\dagger} \sigma^{i} H\right) W_{\mu \nu}^{i} B^{\mu \nu} \\
& \mathcal{Q}_{\|}=\left(\bar{I} \gamma_{\mu} I\right)\left(\bar{I} \gamma^{\mu} I\right) \\
& =\operatorname{Vff}\left(\Gamma_{w, z}\right) \quad=\text { TGC/QGC } \\
& =\operatorname{hVV}\left(\Gamma_{h}\right) \\
& =m_{W}
\end{aligned}
$$

14 operators and 14 parameters

HEFT = Non-linear EFT = EW chiral Lagrangian

Main idea: the Higgs does not need to be in a doublet

\rightarrow a very general EFT

\longrightarrow matches composite Higgs models + other UVs with significant nonlinear effects in the EWSB sector

HEFT operators for VBS - minimal set

restricting to $\mathrm{CP}+U(3)^{5}$ and neglecting 4-fermion interactions

HEFT operators for VBS - minimal set

restricting to $\mathrm{CP}+U(3)^{5}$ and neglecting 4-fermion interactions

	$\mathcal{P}_{C}=\operatorname{Tr}\left(\mathbf{V}_{\mu} \mathbf{V}^{\mu}\right) \mathcal{F}_{C}$	$\mathcal{P}_{T}=\operatorname{Tr}\left(\mathbf{T} \mathbf{V}_{\mu}\right) \operatorname{Tr}\left(\mathbf{T} \mathbf{V}_{\mu}\right) \mathcal{F}_{T}$	$\begin{aligned} \mathbf{T} & =U \sigma^{3} \mathbf{U}^{\dagger} \\ \mathbf{v}_{\mu} & =D_{\mu} \mathbf{U} \mathbf{U}^{\dagger} \end{aligned}$
	$\mathcal{P}_{B}=B_{\mu \nu} B^{\mu \nu} \mathcal{F}_{B}$		
n0000000N	$\mathcal{P}_{1}=B_{\mu \nu} \operatorname{Tr}\left(\mathbf{T} W^{\mu \nu}\right) \mathcal{F}_{1}$	$\mathcal{P}_{2}=B_{\mu \nu} \operatorname{Tr}\left(\mathbf{T}\left[\mathbf{V}^{\mu}, \mathbf{V}^{\nu}\right]\right) \mathcal{F}_{2}$	Quick dictionary:
	$\mathcal{P}_{3}=\operatorname{Tr}\left(W_{\mu \nu}\left[\mathbf{V}^{\mu}, \mathbf{V}^{\nu}\right]\right) \mathcal{F}_{3}$	$\mathcal{P}_{4}=B_{\mu \nu} \operatorname{Tr}\left(\mathbf{T} \mathbf{V}^{\mu}\right) \partial^{\nu} \mathcal{F}_{4}$	$\operatorname{Tr}\left(\mathbf{T} \mathbf{V}_{\mu}\right) \rightarrow Z_{\mu}$
	$\mathcal{P}_{5}=\operatorname{Tr}\left(W_{\mu \nu} \mathbf{V}^{\mu}\right) \partial^{\nu} \mathcal{F}_{5}$	$\mathcal{P}_{6}=\left(\operatorname{Tr}\left(\mathbf{V}_{\mu} \mathbf{V}^{\mu}\right)\right)^{2} \mathcal{F}_{6} \boldsymbol{F}_{S, 0}$	$\operatorname{Tr}\left(\mathbf{V}_{\mu} \mathbf{V}_{\nu}\right) \rightarrow Z_{\mu} Z_{\nu}+W_{\mu}^{+} W_{\mu}^{-}$
	$\mathcal{P}_{11}=\left(\operatorname{Tr}\left(\mathbf{V}_{\mu} \mathbf{V}_{\nu}\right)\right)^{2} \mathcal{F}_{11} \boldsymbol{F}_{S, 1}$	$\mathcal{P}_{12}=\left(\operatorname{Tr}\left(\mathbf{T} W_{\mu \nu}\right)\right)^{2} \mathcal{F}_{12}$	$\mathcal{F}_{i} \rightarrow 1+h / v+\ldots$
	$\mathcal{P}_{13}=i \operatorname{Tr}\left(\mathbf{T} W_{\mu \nu}\right) \operatorname{Tr}\left(\mathbf{T}\left[\mathbf{V}^{\mu}, \mathbf{V}^{\nu}\right]\right) \mathcal{F}_{13}$	$\mathcal{P}_{14}=\varepsilon^{\mu \nu \rho \lambda} \operatorname{Tr}\left(\mathbf{T} \mathbf{V}_{\mu}\right) \operatorname{Tr}\left(\mathbf{V}_{\nu} W_{\rho \lambda}\right) \mathcal{F}_{14}$	
	$\mathcal{P}_{17}=\operatorname{Tr}\left(\mathbf{T} W_{\mu \nu}\right) \operatorname{Tr}\left(\mathbf{T} \mathbf{V}^{\mu}\right) \partial^{\nu} \mathcal{F}_{17}$	$\mathcal{P}_{18}=\operatorname{Tr}\left(\mathbf{T}\left[\mathbf{V}_{\mu}, \mathbf{V}_{\nu}\right]\right) \operatorname{Tr}\left(\mathbf{T} \mathbf{V}^{\mu}\right) \partial^{\nu} \mathcal{F}_{18} F_{S, 0}$	
	$\mathcal{P}_{23}=\operatorname{Tr}\left(\mathbf{V}_{\mu} \mathbf{V}^{\mu}\right)\left(\operatorname{Tr}\left(\mathbf{T} \mathbf{V}_{\nu}\right)\right)^{2} \mathcal{F}_{23} F_{S, 0}$	$\mathcal{P}_{24}=\operatorname{Tr}\left(\mathbf{V}_{\mu} \mathbf{V}_{\nu}\right) \operatorname{Tr}\left(\mathbf{T} \mathbf{V}^{\mu}\right) \operatorname{Tr}\left(\mathbf{T} \mathbf{V}^{\nu}\right) \mathcal{F}_{24} \boldsymbol{F}_{\mathbf{S}, 0}$	
	$\mathcal{P}_{26}=\left(\operatorname{Tr}\left(\mathbf{T} \mathbf{V}_{\mu}\right) \operatorname{Tr}\left(\mathbf{T} \mathbf{V}_{\nu}\right)\right)^{2} \mathcal{F}_{26}$	$\mathcal{P}_{w W W}=\frac{\varepsilon_{\text {ebc }} \Lambda^{2}}{} W_{\mu}^{a \nu} W_{\nu}^{b \rho} W_{\rho}^{c \mu} \mathcal{F}_{W W W}$	
	$\mathcal{N}_{1}^{\mathcal{Q}}=i \bar{Q}_{L} \gamma_{\mu} \mathbf{V}^{\mu} Q_{L} \mathcal{F}$	$\mathcal{N}_{2}^{\mathcal{Q}}=i \bar{Q}_{R} \gamma_{\mu} \mathbf{U}^{\dagger} \mathbf{V}^{\mu} \mathbf{U} Q_{R} \mathcal{F}$	correspond to $d \geqslant 8$ in the SMEFT
	$\mathcal{N}_{5}^{\mathcal{Q}}=i \bar{Q}_{L} \gamma_{\mu}\left\{\mathbf{V}^{\mu}, \mathbf{T}\right\} Q_{L} \mathcal{F}$	$\mathcal{N}_{6}^{\mathcal{Q}}=i \bar{Q}_{R} \gamma_{\mu} \mathbf{U}^{\dagger}\left\{\mathbf{V}^{\mu}, \mathbf{T}\right\} \cup \cup Q_{R} \mathcal{F} \quad$ 何	
	$\mathcal{N}_{7}^{\mathcal{Q}}=i \bar{Q}_{L} \gamma_{\mu} \mathbf{T} \mathbf{V}^{\mu} \mathbf{T} Q_{L} \mathcal{F}$	$\mathcal{N}_{8}^{\mathcal{Q}}=i \bar{Q}_{R} \gamma_{\mu} \mathbf{U}^{\dagger} \mathbf{T} \mathbf{V}^{\mu} \mathbf{T} \mathbf{U} Q_{R} \mathcal{F}$	
	$\mathcal{N}_{2}^{\ell}=i \bar{L}_{R} \gamma_{\mu} \mathbf{U}^{\dagger}\left\{\mathbf{V}^{\mu}, \mathbf{T}\right\} \mathbf{U} L_{R} \mathcal{F}$.		
	$R_{2}^{\ell}=\left(\bar{L}_{L} \gamma_{\mu} L_{L}\right)\left(\bar{L}_{L} \gamma^{\mu} L_{L}\right) \mathcal{F}$	$R_{5}^{\ell}=\left(\bar{L}_{L} \gamma_{\mu} \mathbf{T} L_{L}\right)\left(\bar{L}_{L} \gamma^{\mu} \mathbf{T} L_{L}\right) \mathcal{F}$	basis of 1604.06801
	EFT for	VBS	11/12

Discussion points

Analysis @ d=6: we can restrict to a minimal set of 14 parameters

1. preliminary study: which diagrams are negligible? can L / T polarizations be distinguished?
any sensitivity to CP violation?
which input scheme ($\left\{\alpha_{\mathrm{em}}, m_{Z}, G_{f}\right\}$ or $\left.\left\{m_{W}, m_{Z}, G_{f}\right\}\right)$?
2. start with a feasible subset of parameters if 14 are too many.
3. tools: compare available codes for SMEFT predictions
4. including more parameters: possibility of combining / comparing with other datasets

Later extensions:

1. switch to a HEFT analysis
2. including some $\mathrm{d}=8$ operators

Extra slides

TGC vs QGC in the SMEFT

TGC

$-i g_{W W V}\left[g_{1}^{V}\left(W_{\mu \nu}^{+} W^{-\mu} V^{\nu}-W_{\mu \nu}^{-} W^{+\mu} V^{\nu}\right)+\kappa_{V} W_{\mu}^{+} W_{\nu}^{-} V^{\mu \nu}\right]-i \lambda_{V} V^{\mu \nu} W_{\nu}^{+\rho} W_{\rho \mu}^{-}$

g_{1}^{γ}	1	g_{1}^{Z}	$1-\frac{v^{2}}{4 C_{2 \theta}}\left(C_{H D}+4 C_{H I}^{(3)}-2 C_{\\| I}+4 t_{\theta} C_{H W B}\right)$
κ_{γ}	$1+\frac{v^{2}}{t_{\theta}} C_{H W B}$	κ_{Z}	$1-\frac{v^{2}}{4 C_{2 \theta}}\left(C_{H D}+4 C_{H I}^{(3)}-2 C_{\\| I}+4 s_{2 \theta} C_{H W B}\right)$
λ_{γ}	$6 C_{W} s_{\theta}$	λ_{Z}	$6 C_{W} C_{\theta}$

QGC

$g^{2} / 2\left[g_{W W}^{(1)}\left(\left(W_{\mu}^{+} W_{\nu}^{-}\right)^{2}-\left(W_{\mu}^{+} W^{-\mu}\right)^{2}\right)+g_{V V^{\prime}}^{(1)}\left(W^{+\mu} W^{-\nu} \frac{V_{\mu} V_{\nu}^{\prime}+V_{\nu} V_{\mu}^{\prime}}{2}-W_{\mu}^{+} W^{-\mu} V_{\nu} V^{\prime \nu}\right)\right]$

$$
\begin{array}{c|cc|c}
g_{W W}^{(1)} & 1-\frac{v^{2} c_{\theta}^{2}}{2 c_{2 \theta}}\left(C_{H D}+4 C_{H \|}^{(3)}-2 C_{\|}+4 t_{\theta} C_{H W B}\right) & g_{\gamma \gamma}^{(1)} / s_{\theta}^{2} & 1 \\
g_{Z \gamma}^{(1)} / s_{2 \theta} & 1-\frac{v^{2}}{4 c_{2 \theta}}\left(C_{H D}+4 C_{H \|}^{(3)}-2 C_{\| I}+4 t_{\theta} C_{H W B}\right) & & \\
g_{Z Z}^{(1)} / c_{\theta}^{2} & 1-\frac{v^{2}}{2 c_{2 \theta}}\left(C_{H D}+4 C_{H \|}^{(3)}-2 C_{\| I}+4 t_{\theta} C_{H W B}\right) &
\end{array}
$$

+ structures from $C_{W} \epsilon_{I J K} W_{\mu \nu}^{\prime} W^{J \nu \rho} W_{\rho}^{K \mu}$

aTGC in the SMEFT - schemes

$\alpha_{\text {em }}$ scheme
$\delta g_{1}^{\gamma} 0 \quad \frac{v^{2}}{4}\left(-c_{H D} \frac{c_{\theta}^{2}}{s_{\theta}^{2}}-4 c_{H \ell}^{(3)}+2 c_{\| I}-4 c_{H W B} \frac{c_{\theta}}{s_{\theta}}\right)$
$\delta g_{1}^{Z} \quad-\frac{v^{2}}{4 c_{2 \theta}}\left(c_{H D}+4 c_{H \ell}^{(3)}-2 c_{\|}+4 \frac{s_{\theta}}{c_{\theta}} c_{H W B}\right) \quad \frac{v^{2}}{4}\left(c_{H D}-4 c_{H \ell}^{(3)}+2 c_{\| I}+4 \frac{s_{\theta}}{c_{\theta}} c_{H W B}\right)$
$\delta \kappa_{\gamma} \quad v^{2} \frac{c_{\theta}}{s_{\theta}} c_{H W B}$
$\delta \kappa_{Z} \quad-\frac{v^{2}}{4 c_{2 \theta}}\left(c_{H D}+4 c_{H \ell}^{(3)}-2 c_{\| I}+4 s_{2 \theta} c_{H W B}\right) \quad \frac{v^{2}}{4}\left(c_{H D}-4 c_{H \ell}^{(3)}+2 c_{\| I}\right)$
$\delta \lambda_{\gamma} \quad 6 c_{W} s_{\theta}$
$\delta \lambda_{z} \quad 6 c_{W} c_{\theta}$
$\frac{v^{2}}{4}\left(-c_{H D} \frac{c_{\theta}^{2}}{s_{\theta}^{2}}-4 c_{H \ell}^{(3)}+2 c_{I I}\right)$
m_{W} scheme
$6 c_{W} s_{\theta}$
$6 c_{W} c_{\theta}$

aTGC in the HEFT

$$
\begin{aligned}
\mathcal{L}_{W W V}= & -\operatorname{igwWV}\left\{g_{1}^{V}\left(W_{\mu \nu}^{+} W^{-\mu} V^{\nu}-W_{\mu}^{+} V_{\nu} W^{-\mu \nu}\right)+\kappa V W_{\mu}^{+} W_{\nu}^{-} V^{\mu \nu}\right. \\
& -i g_{5}^{V} \varepsilon^{\mu \nu \rho \sigma}\left(W_{\mu}^{+} \partial_{\rho} W_{\nu}^{-}-W_{\nu}^{-} \partial_{\rho} W_{\mu}^{+}\right) V_{\sigma}+ \\
& \left.+g_{6}^{V}\left(\partial_{\mu} W^{+\mu} W^{-\nu}-\partial_{\mu} W^{-\mu} W^{+\nu}\right) V_{\nu}\right\}
\end{aligned}
$$

$g_{W W Z}=g \cos \theta, \quad g_{W W \gamma}=e$

	Coeff. $\times e^{2} / s_{\theta}^{2}$	Chiral
$\Delta \kappa_{\gamma}$	1	$-2 c_{1}+2 c_{2}+c_{3}-4 c_{12}+2 c_{13}$
Δg_{6}^{γ}	1	$-c_{9}$
Δg_{1}^{Z}	$\frac{1}{c_{\theta}^{2}}$	$\frac{s_{2 \theta}^{2}}{4 e^{2} c_{2 \theta}} c_{T}+\frac{2 s_{\theta}^{2}}{c_{2 \theta}} c_{1}+c_{3}$
$\Delta \kappa_{Z}$	1	$\frac{s_{\theta}^{2}}{e^{2} c_{2 \theta}} c_{T}+\frac{4 s_{\theta}^{2}}{c_{2 \theta}} c_{1}-\frac{2 s_{\theta}^{2}}{c t^{2}} c_{2}+c_{3}-4 c_{12}+2 c_{13}$
Δg_{5}^{Z}	$\frac{1}{c_{\theta}^{2}}$	c_{14}
Δg_{6}^{Z}	$\frac{1}{c_{\theta}^{2}}$	$s_{\theta}^{2} c_{9}-c_{16}$

aQGC in the HEFT

$$
\begin{aligned}
\mathcal{L}_{4 X} \equiv g^{2}\{ & g_{Z Z}^{(1)}\left(Z_{\mu} Z^{\mu}\right)^{2}+g_{W W}^{(1)} W_{\mu}^{+} W^{+\mu} W_{\nu}^{-} W^{-\nu}-g_{W W}^{(2)}\left(W_{\mu}^{+} W^{-\mu}\right)^{2} \\
& +g_{V V^{\prime}}^{(3)} W^{+\mu} W^{-\nu}\left(V_{\mu} V_{\nu}^{\prime}+V_{\mu}^{\prime} V_{\nu}\right)-g_{V V^{\prime}}^{(4)} W_{\nu}^{+} W^{-\nu} V^{\mu} V_{\mu}^{\prime} \\
& \left.+i g_{V V^{\prime}}^{(5)} e^{\mu \nu \rho \sigma} W_{\mu}^{+} W_{\nu}^{-} V_{\rho} V_{\sigma}^{\prime}\right\}
\end{aligned}
$$

	Coeff. $\times e^{2} / 4 s_{\theta}^{2}$	Chiral
$\Delta g_{W W}^{(1)}$	1	$\frac{s_{2 \theta}^{2}}{e^{2} c_{2 \theta}} c_{T}+\frac{8 s_{\theta}^{2}}{c_{2 \theta}} c_{1}+4 c_{3}+2 c_{11}-16 c_{12}+8 c_{13}$
$\Delta g_{W W}^{(2)}$	1	$\frac{s_{2 \theta}^{2}}{e^{2} c_{2 \theta}} c_{T}+\frac{8 s_{\theta}^{2}}{c_{2 \theta}} c_{1}+4 c_{3}-4 c_{6}-\frac{v^{2}}{2} c_{\square h}-2 c_{11}-16 c_{12}+8 c_{13}$
$\Delta g_{Z Z}^{(1)}$	$\frac{1}{c_{\theta}^{4}}$	$c_{6}+\frac{v^{2}}{8} c_{\square h}+c_{11}+2 c_{23}+2 c_{24}+4 c_{26}$
$\Delta g_{Z Z}^{(3)}$	$\frac{1}{c_{\theta}^{2}}$	$\frac{s_{2 \theta}^{2} c_{\theta}^{2}}{e^{2} c_{2 \theta}} c_{T}+\frac{2 s_{2 \theta}^{2}}{c_{2 \theta}} c_{1}+4 c_{\theta}^{2} c_{3}-2 s_{\theta}^{4} c_{9}+2 c_{11}+4 s_{\theta}^{2} c_{16}+2 c_{24}$
$\Delta g_{Z Z}^{(4)}$	$\frac{1}{c_{\theta}^{2}}$	$\frac{2 s_{2 \theta}^{2} c_{\theta}^{2}}{e^{2} c_{2 \theta}} c_{T}+\frac{4 s_{2 \theta}^{2}}{c_{2 \theta}} c_{1}+8 c_{\theta}^{2} c_{3}-4 c_{6}-\frac{v^{2}}{2} c_{\square h}-4 c_{23}$
$\Delta g_{\gamma \gamma}^{(3)}$	s_{θ}^{2}	$-2 c_{9}$
$\Delta g_{\gamma Z}^{(3)}$	$\frac{s_{\theta}}{c_{\theta}}$	$\frac{s_{2 \theta}^{2}}{e^{2} c_{2 \theta}} c_{T}+\frac{8 s_{\theta}^{2}}{c_{2 \theta}} c_{1}+4 c_{3}+4 s_{\theta}^{2} c_{9}-4 c_{16}$
$\Delta g_{\gamma Z}^{(4)}$	$\frac{s_{\theta}}{c_{\theta}}$	$\frac{2 s_{2 \theta}^{2}}{e^{2} c_{2 \theta}} c_{T}+\frac{16 s_{\theta}^{2}}{c_{2 \theta}} c_{1}+8 c_{3}$
$\Delta g_{\gamma Z}^{(5)}$	$\frac{s_{\theta}}{c_{\theta}}$	$8 c_{14}$

