

Dimension-8 Operators in VBS

Michael Rauch | VBSCAN meeting, 31 Aug 2017

Motivation

Vector-Boson Scattering as considered process

Look for possible deviations from SM Assumption: new physics heavy \to SM + effective vertices

Which vertices?

- ffV → V decays
- ffff → 4-fermion contact interaction
- VVV → diboson production
- ...

better sensitivity in other channels with larger cross sections

remaining vertex:

VVVV ↔ triboson production

Motivation

SALE TO SALE OF THE PROPERTY O

How to generate *VVVV* from EFT?

(linear) EFT building blocks

- Higgs doublet field Φ
- covariant derivative D^{μ} , which reduces to ∂^{μ} for singlet fields
- field strength tensors $G^{a,\mu\nu}$, $W^{i,\mu\nu}$, $B^{\mu\nu}$
- lacktriangledown fermion fields ψ

combinations to get V (all dimension-2):

- D^μΦ
- $W^{i,\mu\nu}$ (also non-abelian part containing VV)
- Β^{μν}
- ⇒ lowest-order contribution: dimension-6

$$\begin{split} \mathcal{O}_{WWW} &= \mathsf{Tr} \left[\widehat{W}^{\mu}{}_{\nu} \widehat{W}^{\nu}{}_{\rho} \widehat{W}^{\rho}{}_{\mu} \right] \\ \mathcal{O}_{W} &= \left(\mathcal{D}_{\mu} \Phi \right)^{\dagger} \widehat{W}^{\mu\nu} \left(\mathcal{D}_{\nu} \Phi \right) \\ \mathcal{O}_{\widetilde{W}WW} &= \mathsf{Tr} \left[\widetilde{W}^{\mu}{}_{\nu} \widehat{W}^{\nu}{}_{\rho} \widehat{W}^{\rho}{}_{\mu} \right] \end{split}$$

Motivation

⇒ lowest-order contribution: dimension-6

	\mathcal{O}_{WWW}	\mathcal{O}_W	\mathcal{O}_{B}	\mathcal{O}_{WW}	\mathcal{O}_{BB}	$\mathcal{O}_{\phi,2}$	$\mathcal{O}_{\widetilde{W}WW}$	$\mathcal{O}_{\widetilde{W}}$	$\mathcal{O}_{\widetilde{B}}$	$\mathcal{O}_{\widetilde{W}W}$	$\mathcal{O}_{\widetilde{B}B}$
WWZ	X	Х	Х				X	X	X		
WW_{γ}	X	Χ	Χ				X	Χ	Χ		
HWW		Χ		Χ		Χ		Χ		X	
HZZ		Χ	Χ	X	Χ	X		Χ	Χ	X	X
$HZ\gamma$		Χ	X	Χ	Χ	(X)		Χ	Χ	X	Χ
$H\gamma\dot{\gamma}$				X	Χ	(X)				X	X
wwww	X	Χ					X				
<i>WWZZ</i>	X	X					X				
WWZ_{γ}	X	Χ					X				
$WW_{\gamma\gamma}$	X						X				

- \Rightarrow also give contributions to \emph{VVV} vertices
- ⇒ test in diboson production

severely constrained (parametric uncertainty relevant? \rightarrow task)

- ⇒ look at next order of expansion
- \rightarrow dimension-8

dimension-6 contribution could be loop-induced

 \rightarrow additional factor $\frac{1}{16\pi^2} \sim \frac{1}{160}$

if dimension-8 tree-level \rightarrow similar size of effects possible

[Arzt, Einhorn, Wudka]

Dimension-8

Bosonic dimension-8 operators

$$\mathcal{O}_{S,0} = \left[(D_{\mu} \Phi)^{\dagger} D_{\nu} \Phi \right] \times \left[(D^{\mu} \Phi)^{\dagger} D^{\nu} \Phi \right]$$

$$\mathcal{O}_{S,1} = \left[(D_{\mu} \Phi)^{\dagger} D^{\mu} \Phi \right] \times \left[(D_{\nu} \Phi)^{\dagger} D^{\nu} \Phi \right]$$

$$\mathcal{O}_{S,2} = \left[(D_{\mu} \Phi)^{\dagger} D_{\nu} \Phi \right] \times \left[(D^{\nu} \Phi)^{\dagger} D^{\mu} \Phi \right]$$

$$\mathcal{O}_{M,0} = \text{Tr} \left[\widehat{W}_{\mu\nu} \widehat{W}^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right]$$

$$\mathcal{O}_{M,1} = \text{Tr} \left[\widehat{W}_{\mu\nu} \widehat{W}^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$

$$\mathcal{O}_{M,2} = \left[\widehat{B}_{\mu\nu} \widehat{B}^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right]$$

$$\mathcal{O}_{M,3} = \left[\widehat{B}_{\mu\nu} \widehat{B}^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$

$$\mathcal{O}_{M,4} = \left[(D_{\mu} \Phi)^{\dagger} \widehat{W}_{\beta\nu} D^{\mu} \Phi \right] \times \widehat{B}^{\beta\nu}$$

$$\mathcal{O}_{M,5} = \left[(D_{\mu} \Phi)^{\dagger} \widehat{W}_{\beta\nu} D^{\nu} \Phi \right] \times \widehat{B}^{\beta\mu}$$

$$\mathcal{O}_{M,7} = \left[(D_{\mu} \Phi)^{\dagger} \widehat{W}_{\beta\nu} \widehat{W}^{\beta\mu} D^{\nu} \Phi \right]$$

$$\begin{split} \mathcal{O}_{T,0} &= \operatorname{Tr} \left[\widehat{W}_{\mu\nu} \widehat{W}^{\mu\nu} \right] \times \operatorname{Tr} \left[\widehat{W}_{\alpha\beta} \widehat{W}^{\alpha\beta} \right] \\ \mathcal{O}_{T,1} &= \operatorname{Tr} \left[\widehat{W}_{\alpha\nu} \widehat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\widehat{W}_{\mu\beta} \widehat{W}^{\alpha\nu} \right] \\ \mathcal{O}_{T,2} &= \operatorname{Tr} \left[\widehat{W}_{\alpha\mu} \widehat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\widehat{W}_{\beta\nu} \widehat{W}^{\nu\alpha} \right] \\ \mathcal{O}_{T,5} &= \operatorname{Tr} \left[\widehat{W}_{\mu\nu} \widehat{W}^{\mu\nu} \right] \times \widehat{B}_{\alpha\beta} \widehat{B}^{\alpha\beta} \\ \mathcal{O}_{T,6} &= \operatorname{Tr} \left[\widehat{W}_{\alpha\nu} \widehat{W}^{\mu\beta} \right] \times \widehat{B}_{\mu\beta} \widehat{B}^{\alpha\nu} \\ \mathcal{O}_{T,7} &= \operatorname{Tr} \left[\widehat{W}_{\alpha\mu} \widehat{W}^{\mu\beta} \right] \times \widehat{B}_{\beta\nu} \widehat{B}^{\nu\alpha} \\ \mathcal{O}_{T,8} &= \widehat{B}_{\mu\nu} \widehat{B}^{\mu\nu} \widehat{B}_{\alpha\beta} \widehat{B}^{\alpha\beta} \\ \mathcal{O}_{T,9} &= \widehat{B}_{\alpha\mu} \widehat{B}^{\mu\beta} \widehat{B}_{\beta\nu} \widehat{B}^{\nu\alpha} \end{split}$$

Dimension-8

Hiccups of the original version:

vanish identically:

$$\mathcal{O}_{T,3} = \operatorname{Tr}\left[\widehat{W}_{\alpha\mu}\widehat{W}^{\mu\beta}\widehat{W}^{\nu\alpha}\right] \times \widehat{\mathcal{B}}_{\beta\nu}$$

$$\mathcal{O}_{T,4} = \operatorname{Tr}\left[\widehat{W}_{\alpha\mu}\widehat{W}^{\alpha\mu}\widehat{W}^{\beta\nu}\right] \times \widehat{\mathcal{B}}_{\beta\nu}$$

redundant:

$$\begin{split} \mathcal{O}_{M,6} &= \left[(D_{\mu} \Phi)^{\dagger} \widehat{W}_{\beta \nu} \widehat{W}^{\beta \nu} D^{\mu} \Phi \right] \\ &= \frac{1}{2} \mathcal{O}_{M,0} \end{split}$$

missing:

$$\mathcal{O}_{\mathcal{S},2} = \left[(D_{\mu}\Phi)^{\dagger}D_{\nu}\Phi \right] \times \left[(D^{\nu}\Phi)^{\dagger}D^{\mu}\Phi \right]$$

Dimension-8

Contribution to the different vertices:

	$\mathcal{O}_{S,0},\ \mathcal{O}_{S,1},\ \mathcal{O}_{S,2}$	$\mathcal{O}_{M,0},\ \mathcal{O}_{M,1},\ \mathcal{O}_{M,7}$	$\mathcal{O}_{M,2},\ \mathcal{O}_{M,3},\ \mathcal{O}_{M,4},\ \mathcal{O}_{M,5}$	$\mathcal{O}_{T,0},$ $\mathcal{O}_{T,1},$ $\mathcal{O}_{T,2}$	$\mathcal{O}_{T,5},$ $\mathcal{O}_{T,6},$ $\mathcal{O}_{T,7}$	$\mathcal{O}_{T,8}$ $\mathcal{O}_{T,9}$
WWWW	Х	Х	,	Х		
<i>WWZZ</i>	Χ	Χ	Χ	Χ	Χ	
ZZZZ	X	Χ	Χ	X	X	X
$WWZ\gamma$		Χ	Χ	Χ	Χ	
$WW\gamma\gamma$		Χ	Χ	Χ	Χ	
$ZZZ\gamma$		Χ	Χ	X	X	X
$ZZ\gamma\gamma$		Χ	Χ	X	X	X
$Z\gamma\gamma\gamma$				Χ	Χ	X
$\gamma\gamma\gamma\gamma$				Χ	X	Χ

Defining the field-strength tensors

For dimension-6 operators, typically field-strength tensors slightly modified

$$\begin{split} \widehat{W}^{\mu\nu} &= ig\frac{\sigma^j}{2}W^{j,\mu\nu} = ig\frac{\sigma^j}{2}\left(\partial^{\mu}W^{j,\nu} - \partial^{\nu}W^{j,\mu} - g\epsilon^{jkl}W^{k,\mu}W^{l,\nu}\right) \\ \widehat{B}^{\mu\nu} &= ig'\frac{1}{2}B^{\mu\nu} = ig'\frac{1}{2}\left(\partial^{\mu}B^{\nu} - \partial^{\nu}B^{\mu}\right) \end{split}$$

such that

$$[D^{\mu},D^{\nu}]=\widehat{W}^{\mu\nu}+\widehat{B}^{\mu\nu}$$

→ treated on equal footing with covariant derivative (used in VBFNLO for both dim-6 and dim-8)

[Eboli, Gonzalez-Garcia] (also MadGraph/UFO implementation):

$$\begin{split} \widehat{\boldsymbol{W}}^{\text{EGM},\mu\nu} &= \frac{\sigma^{j}}{2} \boldsymbol{W}^{j,\mu\nu} = \frac{\sigma^{j}}{2} \left(\partial^{\mu} \boldsymbol{W}^{j,\nu} - \partial^{\nu} \boldsymbol{W}^{j,\mu} - g \epsilon^{jkl} \boldsymbol{W}^{k,\mu} \boldsymbol{W}^{l,\nu} \right) \\ \widehat{\boldsymbol{B}}^{\text{EGM},\mu\nu} &= \boldsymbol{B}^{\mu\nu} = (\partial^{\mu} \boldsymbol{B}^{\nu} - \partial^{\nu} \boldsymbol{B}^{\mu}) \end{split}$$

resulting in

$$\widehat{\textit{W}}^{\text{EGM},\mu\nu} = \frac{1}{ig}\widehat{\textit{W}}^{\mu\nu} \qquad \qquad \widehat{\textit{B}}^{\text{EGM},\mu\nu} = \frac{2}{ig'}\widehat{\textit{B}}^{\mu\nu}$$

Non-linear EFT

Also possible to use non-linear EFT (electroweak chiral Lagrangian)

$$\mathcal{L}_4 = \alpha_4 \left(\text{Tr} \left[V_{\mu} V_{\nu} \right] \right)^2 ,$$

$$\mathcal{L}_5 = \alpha_5 \left(\text{Tr} \left[V_{\mu} V^{\mu} \right] \right)^2 ,$$

$$\begin{split} \mathcal{L}_{S,0} &= F_{S,0} \operatorname{Tr} \left[(D_{\mu} \hat{H})^{\dagger} D_{\nu} \hat{H} \right] \times \operatorname{Tr} \left[(D^{\mu} \hat{H})^{\dagger} D^{\nu} \hat{H} \right] \,, \\ \mathcal{L}_{S,1} &= F_{S,1} \operatorname{Tr} \left[(D_{\mu} \hat{H})^{\dagger} D^{\mu} \hat{H} \right] \times \operatorname{Tr} \left[(D_{\nu} \hat{H})^{\dagger} D^{\nu} \hat{H} \right] \,. \end{split}$$

with

$$\begin{split} V_{\mu} &= \Sigma \left(D_{\mu} \Sigma\right)^{\dagger} = -\left(D_{\mu} \Sigma\right) \Sigma^{\dagger} \;, \\ D_{\mu} \Sigma &= \partial_{\mu} \Sigma + i g \frac{\sigma^a}{2} \, W_{\mu}^a \Sigma - i g' \Sigma B_{\mu} \frac{\sigma^3}{2} \;, \\ \Sigma &= \exp \left(-\frac{i}{v} \sigma^a w^a\right) \stackrel{\text{unitary gauge}}{=} 1 \\ \hat{H} &= \frac{1}{2} \begin{pmatrix} v + H - i w^3 & -i (w^1 - i w^2) \\ -i (w^1 + i w^2) & v + H + i w^3 \end{pmatrix} \stackrel{\text{unitary gauge}}{=} \frac{v + H}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{split}$$

→ Whizard

Relation to linear EFT

Relations between linear and non-linear EFT

$$\alpha_4 = \frac{v^4}{16} F_{S,0} = \frac{v^4}{16} \frac{f_{S,0} + f_{S,2}}{\Lambda^4} , \qquad f_{S,0} = f_{S,2}$$

$$\alpha_5 = \frac{v^4}{16} F_{S,1} = \frac{v^4}{16} \frac{f_{S,1}}{\Lambda^4}$$

Linear-EFT scenarios with $f_{S,0} \neq f_{S,2}$ need additional operator

$$\mathcal{L}_6 = \alpha_6 \operatorname{Tr} \left[\textit{V}_{\mu} \, \textit{V}_{\nu} \right] \operatorname{Tr} \left[\textit{TV}^{\mu} \right] \operatorname{Tr} \left[\textit{TV}^{\nu} \right]$$

with
$$T = \Sigma \sigma_3 \Sigma^{\dagger}$$

isospin-breaking

Conclusions

- parametrization of effects contributing to VVVV vertex
- effects not constrained by other, "easier" measurements
 - → dimension-8

(possibly leading tree-level contribution of new physics)

- → impact of dimension-6 operators taken at limits?
- subtle convention differences in implementations
 - → unified definitions?

(← subtle Snowmass 2013 hint [arXiv:1309.7890] not picked up by experiments)

more detailed write-up: [MR, arXiv:1610.08420]

Backup

Backup

Dimension-6 operators

$$\begin{split} \mathcal{O}_{WWW} &= \operatorname{Tr} \left[\widehat{W}^{\mu}{}_{\nu} \widehat{W}^{\nu}{}_{\rho} \widehat{W}^{\rho}{}_{\mu} \right] \,, \\ \mathcal{O}_{W} &= \left(D_{\mu} \Phi \right)^{\dagger} \widehat{W}^{\mu\nu} \left(D_{\nu} \Phi \right) \,, \\ \mathcal{O}_{B} &= \left(D_{\mu} \Phi \right)^{\dagger} \widehat{B}^{\mu\nu} \left(D_{\nu} \Phi \right) \,, \\ \mathcal{O}_{WW} &= \Phi^{\dagger} \widehat{W}_{\mu\nu} \widehat{W}^{\mu\nu} \Phi \,, \\ \mathcal{O}_{BB} &= \Phi^{\dagger} \widehat{B}_{\mu\nu} \widehat{B}^{\mu\nu} \Phi \,, \\ \mathcal{O}_{\phi,2} &= \partial_{\mu} \left(\Phi^{\dagger} \Phi \right) \partial^{\mu} \left(\Phi^{\dagger} \Phi \right) \,, \end{split}$$

$$\begin{split} \mathcal{O}_{\widetilde{W}WW} &= \operatorname{Tr} \left[\widetilde{W}^{\mu}{}_{\nu} \widehat{W}^{\nu}{}_{\rho} \widehat{W}^{\rho}{}_{\mu} \right] \,, \\ \mathcal{O}_{\widetilde{W}} &= (D_{\mu} \Phi)^{\dagger} \, \widetilde{W}^{\mu\nu} \, (D_{\nu} \Phi) \,\,, \\ \mathcal{O}_{\widetilde{B}} &= (D_{\mu} \Phi)^{\dagger} \, \widetilde{B}^{\mu\nu} \, (D_{\nu} \Phi) \,\,, \\ \mathcal{O}_{\widetilde{W}W} &= \Phi^{\dagger} \, \widetilde{W}_{\mu\nu} \, \widehat{W}^{\mu\nu} \Phi \,, \\ \mathcal{O}_{\widetilde{B}B} &= \Phi^{\dagger} \, \widetilde{B}_{\mu\nu} \, \widehat{B}^{\mu\nu} \Phi \,. \end{split}$$

Deviation Patterns

Can we say something about size of EFT coefficients? [Arzt, Einhorn, Wudka hep-ph/9405214]

- Assumption: high-energy theory (HET) is gauge theory
- lacktriangle keep track of all possible operators ightarrow a priori no EOM
- statement can be HET-dependent → take maximum contribution

Fig. 1. The contributions of two types of underlying physics to the four-fermion operator. (a) A heavy gauge boson leads to an effective coupling of order one. (b) A heavy fermion comes in only at the one-loop level and leads to an effective coupling of order $1/16\pi^2$.

- lacktriangle ightarrow list of all possible dim- \leq 6 graphs from power-counting
- gauge theory restricts structure of vertices e.g. vector interactions: from $F_a^{\mu\nu}F_{\mu\nu}^a$ terms in $\mathcal L$ group structure \to only AAAA, XXXX, AAXX, AXXX vertices (A SM-V, X NP-V)
- lacksquare ightarrow basis splitting into tree-level and loop-induced
- dim-8 operators of VVV can be as large as dim-6

Deviation Patterns (2)

Fig. 2. These are all possible relevant vertices in an unconstrained field theory. Each dashed line may be a scalar or a vector. The dot represents a coupling constant proportional to Λ , the heavy scale.

In summary, the forbidden vertices are

$$\begin{array}{llll} \phi_{\mathrm{li}}\phi_{\mathrm{li}}\phi_{\mathrm{li}}, & \phi_{\mathrm{li}}\phi_{\mathrm{h}}AA, & \phi_{\mathrm{li}}\phi_{\mathrm{h}}A, & \phi_{\mathrm{li}}AX, \\ \phi_{\mathrm{li}}AA, & \phi_{\mathrm{h}}AA, & \phi_{\mathrm{h}}AX, & \phi_{\mathrm{li}}XX, \\ AAX, & AAAX, & \psi_{\mathrm{li}}\psi_{\mathrm{h}}A. & \end{array}$$

Deviation Patterns (3)

rig. 3. These are an possible tree graphs which are suppressed by at most $1/A^{\alpha}$, in a general field theory, with only heavy internal lines and light external lines. The dotted three-boson vertices must have a coupling constant proportional to A, the heavy mass scale. Each dashed line may be a scalar or a vector.