Colloquium Prague v15 Prague, Czech Republic, November 1-3, 2017

Double Beta Decay Theory Fedor Šimkovic

Majorana fermion

https://en.wikipedia.org/wiki/File:Ettore_Majorana.jpg

TEORIA SIMMETRICA DELL'ELETTRONE E DEL POSITRONE

Nota di ETTORE MAJORANA

Symmetric Theory of Electron and Positron Nuovo Cim. 14 (1937) 171

Sunto. - Si dimostra la possibilità di pervenire a una piena simmetrizzazione formale della teoria quantistica dell'elettrone e del positrone facendo uso di un nuovo processo di quantizzazione. Il significato delle equazioni di DIRAC ne risulta alquanto modificato e non vi è più luogo a parlare di stati di energia negativa; nè a presumere per ogni altro tipo di particelle, particolarmente neutre, l'esistenza di « antiparticelle » corrispondenti ai « vuoti » di energia negativa.

L'interpretazione dei cosidetti « stati di energia negativa » proposta da DIRAC (¹) conduce, come è ben noto, a una descrizione sostanzialmente simmetrica degli elettroni e dei positroni. La sostanziale simmetria del formalismo consiste precisamente in questo, che fin dove è possibile applicare la teoria girando le difficoltà di convergenza, essa fornisce realmente risultati del tutto simmetrici. Tuttavia gli artifici suggeriti per dare alla teoria una forma simmetrica

isfacenti; trica, sia iante tali :he possinuova via

che conduce più direttamente alla meta.

Per quanto riguarda gli elettroni e i positroni, da essa si può veramente attendere soltanto un progresso formale; ma ci sembra importante, per le possibili estensioni analogiche, che venga a cadere la nozione stessa di stato di energia negativa. Vedremo infatti che è perfettamente possibile costruire, nella maniera più naturale, una teoria delle particelle neutre elementari senza stati negativi.

(¹) P. A. M. DIEAC, & Proc. Camb. Phil. Soc. », 80, 150, 1924. V. anche W. HEISENBERG, & ZS. f. Phys. », 90, 209, 1934.

I ragazzi di via Panisperna

MESONIUM AND ANTIMESONIUM

B. PONTECORVO

Joint Institute for Nuclear Research

Submitted to JETP editor May 23, 1957

J. Exptl. Theoret. Phys. (U.S.S.R.) 33, 549-551 (August, 1957)

INVERSE BETA PROCESSES AND NONCON-SERVATION OF LEPTON CHARGE

B. PONTECORVO

Joint Institute for Nuclear Research

Submitted to JETP editor October 19, 1957

J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 247-249 (January, 1958)

It follows from the above assumptions that in vacuum a neutrino can be transformed into an antineutrino and vice versa. This means that the neutrino and antineutrino are "mixed" particles, i.e., a symmetric and antisymmetric combination of two truly neutral Majorana particles ν_1 and ν_2 of different combined parity.⁵

1968 Gribov, Pontecorvo [PLB 28(1969) 493] oscillations of neutrinos - a solution of deficit of solar neutrinos in Homestake exp.

OUTLINE

- Introduction v-oscillations and v-masses
- The 0vbb-decay scenarios due neutrinos exchange (simpliest, sterile v, LR-symmetric model)
- **DBD** NMEs and Quenching of g_A (nuclear structure issues)
- DBD with emission of a single electron
- DBD NMEs within schematic models (SU(4) symmetry, nonlinear QRPA)

• Conclusion

Acknowledgements: A. Faesler (Tuebingen), P. Vogel (Caltech), S. Kovalenko (Valparaiso U.), M. Krivoruchenko (ITEP Moscow), D. Štefánik, R. Dvornický (Comenius U.), A. Babič, A. Smetana, J. Terasaki (IEAP CTU Prague), ... **Observation of v-oscillations = the first prove of the BSM physics**

mass-squared differences: $\Delta m^2_{SUN} \cong 7.5 \ 10^{-5} \ eV^2$, $\Delta m^2_{ATM} \cong 2.4 \ 10^{-3} \ eV^2$

The observed small neutrino masses (limits from tritium β-decay, cosmology) have profound implications for our understanding of the Universe and are now a major focus in astro, particle and nuclear physics and in cosmology.

PMNS
unitary
mixing
matrix $\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$ Iarge off-diagonal values $\begin{pmatrix} 0.82 & 0.54 & -0.15 \\ -0.35 & 0.70 & 0.62 \\ 0.44 & -0.45 & 0.77 \end{pmatrix}$

 $3 \text{ angles: } \theta_{12} = 33.36^{\circ} \text{ (solar), } \theta_{13} = 8.66^{\circ} \text{ (reactor), } \theta_{23} = 40.0^{\circ} \text{ or } 50.4^{\circ} \text{ (atmospheric)}$ $U^{PMNS} = \begin{pmatrix} c_{12}c_{13} & c_{13}s_{12} & e^{-i\delta}s_{13} \\ -c_{23}s_{12} - e^{i\delta}c_{12}s_{13}s_{23} & c_{12}c_{23} - e^{i\delta}s_{12}s_{13}s_{23} & c_{13}s_{23} \\ s_{12}s_{23} - e^{i\delta}c_{12}c_{23}s_{13} & -e^{i\delta}c_{23}s_{12}s_{13} - c_{12}s_{23} & c_{13}c_{23} \end{pmatrix} \begin{pmatrix} e^{i\alpha_{1}} & 0 & 0 \\ 0 & e^{i\alpha_{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $\text{unknown (CP violating) phases: } \delta, \alpha_{1}, \alpha_{2}$

The answer to the question whether neutrinos are their own antiparticles is of central importance, not only to our understanding of neutrinos, but also to our understanding of the origin of mass.

What is the nature of neutrinos?

Symmetric Theory of Electron and Positron Nuovo Cim. 14 (1937) 171

Only the $0\nu\beta\beta$ -decay can answer this fundamental question

Analogy with kaons: K₀ and K₀

Fedor Simkovic

Analogy with π_0

Beyond the Standard model physics (EFT scenario)

Minimal SM + EFT

The absence of the right-handed neutrino fields in the Standard Model is the simplest, most economical possibility. In such a scenario Majorana mass term is the only possibility for neutrinos to be massive and mixed. This mass term is generated by the lepton number violating Weinberg effective Lagrangian.

$$\mathcal{L}_{5}^{eff} = -\frac{1}{\Lambda} \sum_{l_{1}l_{2}} \left(\overline{\Psi}_{l_{1}L}^{lep} \widetilde{\Phi} \right) \acute{Y}_{l_{1}l_{2}} \left(\widetilde{\Phi}^{T} (\Psi_{l_{2}L}^{lep})^{e} \right)$$
$$m_{i} = \frac{v}{\Gamma} (y_{i}v), \quad i = 1, 2, 3 \qquad \Lambda > 10^{15} \text{ GeV}$$

Heavy Majorana leptons $N_i (N_i=N_i^c)$ singlet of $SU(2)_L xU(1)_Y$ group Yukawa lepton number violating int.

The three Majorana neutrino masses are suppressed by the ratio of the electroweak scale and a scale of a lepton-number violating physics.

The discovery of the $\beta\beta$ -decay and absence of transitions of flavor neutrinos into sterile states would be evidence in favor of this minimal scenario.

I. *The simplest 0 vββ-decay scenario* (SM + EFT scenario)

$$\left(T^{0\nu}_{1/2}\right)^{-1} = \left|\frac{m_{\beta\beta}}{m_e}\right|^2 g_A^4 \left|M^{0\nu}_{\nu}\right|^2 G^{0\nu}$$

$(A,Z) \rightarrow (A,Z+2) + e^- + e^-$

		transition	$G^{01}(E_0, Z)$	$Q_{\beta\beta}$	Abund.	$ M^{0\nu} ^2$	
	_ A=const (even) _		$ imes 10^{14} y$	[MeV]	(%)		
its)		$^{150}Nd \rightarrow ^{150}Sm$	26.9	3.667	6	?	
Î		${}^{48}Ca \rightarrow {}^{48}Ti$	8.04	4.271	0.2	?	
rary		${}^{96}Zr \rightarrow {}^{96}Mo$	7.37	3.350	3	?	
bitı		$^{116}Cd \rightarrow {}^{116}Sn$	6.24	2.802	7	?	
s (ai		$^{136}Xe \rightarrow {}^{136}Ba$	5.92	2.479	9	?	
tomic mass		$^{100}Mo \rightarrow {}^{100}Ru$	5.74	3.034	10	?	
		$^{130}Te \rightarrow ^{130}Xe$	5.55	2.533	34	?	
		$^{82}Se \rightarrow {}^{82}Kr$	3.53	2.995	9	?	
A	$\left - \right\rangle$	$^{76}Ge \rightarrow {}^{76}Se$	0.79	2.040	8	?	
	– Z even –						
-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	The NM	IEs for 0vββ-decay must be evaluated using tools of nuclear theory				

Effective mass of Majorana neutrinos

Complementarity of $0\nu\beta\beta$ -decay, **β-decay and** cosmology

β-decay (Mainz, **Troitsk)**

87 meV (IS)

Improvements: i) QRPA (constrained Hamiltonian by $2\nu\beta\beta$ half-life, self-consistent treatment of src, restoration of isospin symmetry ...), ii) More stringent limits on the $0\nu\beta\beta$ half-life

III. The 0 νββ-decay within L-R symmetric theories (D-M mass term, see-saw, V-A and V+A int., exchange of light neutrinos)

Effective β-decay Hamiltonian

$$\boldsymbol{H}^{\boldsymbol{\beta}} = \frac{G_{\boldsymbol{\beta}}}{\sqrt{2}} \left[j_{L}^{\ \rho} J_{L\rho} + \boldsymbol{\chi} \, j_{L}^{\ \rho} J_{R\rho} \right]$$

$$+ \quad \eta \; j_R^{\rho} J_{L\rho} + \; \lambda \; j_R^{\rho} J_{R\rho} + h.c. \Big]$$

Mixing of vector bosons \boldsymbol{W}_L and \boldsymbol{W}_R

$$\begin{pmatrix} W_L^- \\ W_R^- \end{pmatrix} = \begin{pmatrix} \cos \zeta & \sin \zeta \\ -\sin \zeta & \cos \zeta \end{pmatrix} \begin{pmatrix} W_1^- \\ W_2^- \end{pmatrix}$$

The $0\nu\beta\beta$ -decay half-life

$$\begin{bmatrix} T_{1/2}^{0\nu} \end{bmatrix}^{-1} = \frac{\Gamma^{0\nu}}{\ln 2} = g_A^4 |M_{GT}|^2 \left\{ C_{mm} \frac{|m_{\beta\beta}|^2}{m_e} \right\}^2 + C_{m\lambda} \frac{|m_{\beta\beta}|}{m_e} \langle \lambda \rangle \cos \psi_1 + C_{m\eta} \frac{|m_{\beta\beta}|}{m_e} \langle \eta \rangle \cos \psi_2 + C_{\lambda\lambda} \langle \lambda \rangle^2 + C_{\eta\eta} \langle \eta \rangle^2 + C_{\lambda\eta} \langle \lambda \rangle \langle \eta \rangle \cos (\psi_1 - \psi_2) \right\}$$

left- and right-handed lept. currents

$$\begin{array}{rcl} j_L^{\ \rho} &=& \bar{e}\gamma^{\rho}(1-\gamma_5)\nu_{eL} \\ j_R^{\ \rho} &=& \bar{e}\gamma^{\rho}(1+\gamma_5)\nu_{eR} \end{array} \end{array}$$

$$\eta = -\tan\zeta, \quad \chi = \eta,$$

$$\lambda = (M_{W_1}/M_{W_2})^2$$

$$<\lambda>$$
 - W_L - W_R exch.

$$<\eta>$$
 - W_L - W_R mixing

11/2/2017

Clear dominance of $m_{\beta\beta}$ over $\langle \lambda \rangle$ mechanism by current constraint on mass of heavy vector boson and 1 MeV $\leq m_D \leq 1$ GeV

20

IV. The
$$0 \nu \beta \beta$$
-decay within L-R symmetric theories
(D-M mass term, see-saw, V-A and V+A int., exchange of heavy neutrinos)
J.D.Vergados, H. Ejiri, F.Š., Int. J. Mod. Phys. E25, 1630007(2016)
 $\left(T_{1/2}^{0\nu} G^{0\nu} g_A^2\right)^{-1} = \left|\eta_{\nu} M_{\nu}^{0\nu} + \eta_N^L M_N^{0\nu}\right|^2 + \left|\eta_N^R M_N^{0\nu}\right|^2$
 $\eta_{\nu} = \frac{m_{\beta\beta}}{m_e} = \sum_i ((U_0)_{ei})^2 \frac{m_i}{m_e} \qquad \eta_N^L = \frac{m_p}{m_{LNV}} \sum_i (U_{ei}^{(12)})^2 \frac{m_{LNV}}{M_i} \qquad \eta_{\nu} >> \eta_N^L$
 $\approx \frac{m_p}{m_{LNV}} \frac{m_D^2}{m_e p_\nu} \underbrace{(U_0)_{ei}^2 \frac{m_i m_{LNV}}{m_D^2}}_{-1} \approx \frac{m_p}{m_{LNV}} \left(\frac{m_D}{m_{LNV}}\right)^2 \underbrace{\sum_i \frac{m_{LNV}}{M_i}}_{comparable} -1$
 $\eta_N^R = \frac{m_p}{m_{LNV}} \left(\frac{M_{W_1}}{M_{W_2}}\right)^2 \underbrace{(V_0)_{ei}^2 \frac{m_{LNV}}{M_i}}_{i} -1$
 η_{ν} and η^R_N might
be comparable, if e.g.
11/2/2017
 $m_0 \approx m_c \sim 5 < 10^4$

Two non-interfering mechanisms of the 0vββ-decay (light LH and heavy RH neutrino exchange)

$$\mathcal{U} \;=\; \left(egin{array}{cc} U_0 & \zeta \ 1 \ -\zeta \ 1 & V_0 \end{array}
ight)$$

$$\begin{array}{lcl} m_i M_i &\simeq& m_D^2 \\ M_{\beta\beta}^{\rm R} &=& \lambda \; \frac{\langle p^2 \rangle_a}{m_D^2} \; \left| \sum_{j=1}^3 (U_0^{\dagger})_{ej}^2 \; m_j \right| \end{array}$$

$$\begin{split} V_0 &= U_{PMNS}^{\dagger} \\ M_i &= m_D^2/m_i \ m_D \simeq 5 \ {\rm MeV} \\ \lambda &= 7.7 \times 10^{-4} \end{split}$$

$$\begin{split} m_i &\simeq \zeta^2 M_i \\ M_{\beta\beta}^{\rm R} &= \lambda \zeta^2 \left| \sum_{j=1}^3 (U_0^{\dagger})_{ej}^2 \frac{\langle p^2 \rangle_a}{m_j} \right| \end{split}$$

$$\begin{split} V_0 &= U_{PMNS}^{\dagger} \\ \zeta &= m_i / M_i \quad \zeta^2 \simeq 5 \times 10^{-17} \\ \lambda &= 7.7 \times 10^{-4} \end{split}$$

A. Babič, S. Kovalenko, M.I. Krivoruchenko, F.Š., to be submitted

Calculation of 0vbb decay NMEs

Method	g_A	src	$M_{\nu}^{0\nu}$					
			^{48}Ca	$^{76}\mathrm{Ge}$	^{82}Se	⁹⁶ Zr	^{100}Mo	$^{110}\mathrm{Pd}$
ISM-StMa	1.25	UCOM	0.85	2.81	2.64			
ISM-CMU	1.27	Argonne	0.80	3.37	3.19			
		CD-Bonn	0.88	3.57	3.39			
IBM	1.27	Argonne	1.75	4.68	3.73	2.83	4.22	4.05
QRPA-TBC	1.27	Argonne	0.54	5.16	4.64	2.72	5.40	5.76
		CD-Bonn	0.59	5.57	5.02	2.96	5.85	6.26
QRPA-Jy	1.26	CD-Bonn		5.26	3.73	3.14	3.90	6.52
dQRPA-NC	1.25	without		5.09				
PHFB	1.25	Argonne				2.84	5.82	7.12
		CD-Bonn				2.98	6.07	7.42
NREDF	1.25	UCOM	2.37	4.60	4.22	5.65	5.08	
REDF	1.25	without	2.94	6.13	5.40	6.47	6.58	
Mean value			1.34	4.55	4.02	3.78	5.57	6.12
variance)		0.81	1.20	0.91	2.49	0.58	1.78
, arrance								
Method	g_A	src			M	$r_{\nu}^{0\nu}$		
Method	g_A	src	¹¹⁶ Cd	^{124}Sn	М 128 Те	$r_{\nu}^{0\nu}$ r_{ν}^{130} Te	¹³⁶ Xe	¹⁵⁰ Nd
Method ISM-StMa	g_A 1.25	src	¹¹⁶ Cd	$\frac{124}{2.62}$ Sn	М 128 Те	$r_{\nu}^{0\nu}$ r_{ν}^{130} Te 2.65	¹³⁶ Xe 2.19	¹⁵⁰ Nd
Method ISM-StMa ISM-CMU	g_A 1.25 1.27	src UCOM Argonne	¹¹⁶ Cd	124Sn 2.62 2.00	M 128 Te	$r_{\nu}^{0\nu}$ r_{ν}^{130} Te 2.65 1.79	136 Xe 2.19 1.63	¹⁵⁰ Nd
Method ISM-StMa ISM-CMU	g_A 1.25 1.27	src UCOM Argonne CD-Bonn	¹¹⁶ Cd	124Sn 2.62 2.00 2.15	M 128 Te	$ \frac{70\nu}{\nu} $ 130 Te 2.65 1.79 1.93	¹³⁶ Xe 2.19 1.63 1.76	¹⁵⁰ Nd
Method ISM-StMa ISM-CMU IBM	g_A 1.25 1.27 1.27	src UCOM Argonne CD-Bonn Argonne	¹¹⁶ Cd 3.10	124Sn 2.62 2.00 2.15 3.19	М ¹²⁸ Те 4.10	$r_{\nu}^{0\nu}$ r_{ν}^{130} Te 2.65 1.79 1.93 3.70	¹³⁶ Xe 2.19 1.63 1.76 3.05	¹⁵⁰ Nd 2.67
Method ISM-StMa ISM-CMU IBM QRPA-TBC	g_A 1.25 1.27 1.27 1.27	STC UCOM Argonne CD-Bonn Argonne Argonne	¹¹⁶ Cd 3.10 4.04	$ \begin{array}{r} 124 \text{Sn} \\ 2.62 \\ 2.00 \\ 2.15 \\ 3.19 \\ 2.56 \\ \end{array} $	M^{128} Te 4.10 4.56	$\begin{array}{r} \frac{70\nu}{\nu} \\ 130 \mathrm{Te} \\ \hline 2.65 \\ 1.79 \\ 1.93 \\ 3.70 \\ 3.89 \\ \end{array}$	¹³⁶ Xe 2.19 1.63 1.76 3.05 2.18	¹⁵⁰ Nd 2.67
Method ISM-StMa ISM-CMU IBM QRPA-TBC	g_A 1.25 1.27 1.27 1.27	src UCOM Argonne CD-Bonn Argonne Argonne CD-Bonn	¹¹⁶ Cd 3.10 4.04 4.34	$ \begin{array}{r} 124 \text{Sn} \\ 2.62 \\ 2.00 \\ 2.15 \\ 3.19 \\ 2.56 \\ 2.91 \\ \end{array} $	M ^{128}Te 4.10 4.56 5.08	$ \frac{70\nu}{\nu} $ 130 Te 2.65 1.79 1.93 3.70 3.89 4.37	¹³⁶ Xe 2.19 1.63 1.76 3.05 2.18 2.46	¹⁵⁰ Nd 2.67 3.37
Method ISM-StMa ISM-CMU IBM QRPA-TBC QRPA-Jy	g_A 1.25 1.27 1.27 1.27 1.27 1.26	STC UCOM Argonne CD-Bonn Argonne Argonne CD-Bonn CD-Bonn	¹¹⁶ Cd 3.10 4.04 4.34 4.26	$ \begin{array}{r} 124 \text{Sn} \\ 2.62 \\ 2.00 \\ 2.15 \\ 3.19 \\ 2.56 \\ 2.91 \\ 5.30 \\ \end{array} $	M 128 Te 4.10 4.56 5.08 4.92	$\begin{array}{r} ^{70\nu} \nu \\ ^{130} \mathrm{Te} \\ \hline 2.65 \\ 1.79 \\ 1.93 \\ 3.70 \\ 3.89 \\ 4.37 \\ 4.00 \end{array}$	¹³⁶ Xe 2.19 1.63 1.76 3.05 2.18 2.46 2.91	¹⁵⁰ Nd 2.67 3.37
Method ISM-StMa ISM-CMU IBM QRPA-TBC QRPA-Jy dQRPA-NC	$\begin{array}{c} g_A \\ 1.25 \\ 1.27 \\ 1.27 \\ 1.27 \\ 1.26 \\ 1.25 \end{array}$	src UCOM Argonne CD-Bonn Argonne Argonne CD-Bonn CD-Bonn without	¹¹⁶ Cd 3.10 4.04 4.34 4.26	$ \begin{array}{r} 124 \text{Sn} \\ 2.62 \\ 2.00 \\ 2.15 \\ 3.19 \\ 2.56 \\ 2.91 \\ 5.30 \\ \end{array} $	M 128Te 4.10 4.56 5.08 4.92	$\begin{array}{r} 70\nu\\ \nu\\ 130{\rm Te}\\ \hline 2.65\\ 1.79\\ 1.93\\ 3.70\\ 3.89\\ 4.37\\ 4.00\\ 1.37\\ \end{array}$	¹³⁶ Xe 2.19 1.63 1.76 3.05 2.18 2.46 2.91 1.55	¹⁵⁰ Nd 2.67 3.37 2.71
Method ISM-StMa ISM-CMU IBM QRPA-TBC QRPA-Jy dQRPA-NC PHFB	$\begin{array}{c} g_A \\ \hline 1.25 \\ 1.27 \\ 1.27 \\ 1.27 \\ 1.26 \\ 1.25 \\ 1.27 \end{array}$	Src UCOM Argonne CD-Bonn Argonne CD-Bonn CD-Bonn without Argonne	¹¹⁶ Cd 3.10 4.04 4.34 4.26	¹²⁴ Sn 2.62 2.00 2.15 3.19 2.56 2.91 5.30	M ¹²⁸ Te 4.10 4.56 5.08 4.92 3.90	$r_{\nu}^{0\nu}$ r_{ν}^{130} Te 2.65 1.79 1.93 3.70 3.89 4.37 4.00 1.37 3.81	¹³⁶ Xe 2.19 1.63 1.76 3.05 2.18 2.46 2.91 1.55	¹⁵⁰ Nd 2.67 3.37 2.71 2.58
Method ISM-StMa ISM-CMU IBM QRPA-TBC QRPA-Jy dQRPA-NC PHFB	$\begin{array}{c} g_A \\ 1.25 \\ 1.27 \\ 1.27 \\ 1.27 \\ 1.26 \\ 1.25 \\ 1.27 \end{array}$	STC UCOM Argonne CD-Bonn Argonne CD-Bonn CD-Bonn without Argonne CD-Bonn	¹¹⁶ Cd 3.10 4.04 4.34 4.26	$\frac{124}{2.62}$ 2.00 2.15 3.19 2.56 2.91 5.30	M ¹²⁸ Te 4.10 4.56 5.08 4.92 3.90 4.08	$\begin{array}{r} ^{0\nu} \\ ^{130}\mathrm{Te} \\ \hline 2.65 \\ 1.79 \\ 1.93 \\ 3.70 \\ 3.89 \\ 4.37 \\ 4.00 \\ 1.37 \\ 3.81 \\ 3.98 \end{array}$	¹³⁶ Xe 2.19 1.63 1.76 3.05 2.18 2.46 2.91 1.55	¹⁵⁰ Nd 2.67 3.37 2.71 2.58 2.68
Method ISM-StMa ISM-CMU IBM QRPA-TBC QRPA-Jy dQRPA-NC PHFB NREDF	$\begin{array}{c} g_A \\ \hline 1.25 \\ 1.27 \\ 1.27 \\ 1.27 \\ 1.26 \\ 1.25 \\ 1.27 \\ 1.25 \end{array}$	STC UCOM Argonne CD-Bonn Argonne CD-Bonn CD-Bonn without Argonne CD-Bonn UCOM	¹¹⁶ Cd 3.10 4.04 4.34 4.26 4.72	¹²⁴ Sn 2.62 2.00 2.15 3.19 2.56 2.91 5.30 4.81	M ¹²⁸ Te 4.10 4.56 5.08 4.92 3.90 4.08 4.11	$r_{\nu}^{0\nu}$ r_{ν}^{130} Te 2.65 1.79 1.93 3.70 3.89 4.37 4.00 1.37 3.81 3.98 5.13	¹³⁶ Xe 2.19 1.63 1.76 3.05 2.18 2.46 2.91 1.55 4.20	¹⁵⁰ Nd 2.67 3.37 2.71 2.58 2.68 1.71
Method ISM-StMa ISM-CMU IBM QRPA-TBC QRPA-Jy dQRPA-NC PHFB NREDF REDE	$\begin{array}{c} g_A \\ 1.25 \\ 1.27 \\ 1.27 \\ 1.27 \\ 1.26 \\ 1.25 \\ 1.27 \\ 1.25 \\ 1.25 \end{array}$	STC UCOM Argonne CD-Bonn Argonne CD-Bonn CD-Bonn without Argonne CD-Bonn uthout Argonne CD-Bonn without	¹¹⁶ Cd 3.10 4.04 4.34 4.26 4.72 5.52	¹²⁴ Sn 2.62 2.00 2.15 3.19 2.56 2.91 5.30 4.81 4.33	M 128 Te 4.10 4.56 5.08 4.92 3.90 4.08 4.11	$r_{\nu}^{0\nu}$ r_{ν}^{130} Te 2.65 1.79 1.93 3.70 3.89 4.37 4.00 1.37 3.81 3.98 5.13 4.98	$\begin{array}{r} ^{136}\mathrm{Xe}\\ 2.19\\ 1.63\\ 1.76\\ 3.05\\ 2.18\\ 2.46\\ 2.91\\ 1.55\\ 4.20\\ 4.32\end{array}$	¹⁵⁰ Nd 2.67 3.37 2.71 2.58 2.68 1.71 5.60
Method ISM-StMa ISM-CMU IBM QRPA-TBC QRPA-Jy dQRPA-NC PHFB NREDF BEDE Mean value	$\begin{array}{c} g_A \\ 1.25 \\ 1.27 \\ 1.27 \\ 1.27 \\ 1.26 \\ 1.25 \\ 1.27 \\ 1.25 \\ 1.25 \\ 1.25 \end{array}$	STC UCOM Argonne CD-Bonn Argonne CD-Bonn CD-Bonn without Argonne CD-Bonn UCOM without	¹¹⁶ Cd 3.10 4.04 4.34 4.26 4.72 5.52 4.34	124 Sn 2.62 2.00 2.15 3.19 2.56 2.91 5.30 4.81 4.33 3.07	M ¹²⁸ Te 4.10 4.56 5.08 4.92 3.90 4.08 4.11 4.34	$r_{\nu}^{0\nu}$ r_{ν}^{130} Te 2.65 1.79 1.93 3.70 3.89 4.37 4.00 1.37 3.81 3.98 5.13 4.98 3.42	$\begin{array}{r} ^{136}\mathrm{Xe}\\ 2.19\\ 1.63\\ 1.76\\ 3.05\\ 2.18\\ 2.46\\ 2.91\\ 1.55\\ 4.20\\ 4.32\\ 2.59\end{array}$	¹⁵⁰ Nd 2.67 3.37 2.71 2.58 2.68 1.71 5.60 3.01

NMEs for unquenched value of g_A

Mean field approaches (PHFB, NREDF, REDF) ⇒ Large NMEs

Interacting Shell Model (ISM-StMa, ISM-CMU) ⇒ small NMEs

Quasiparticle Random Phase Approximation (QRPA-TBC, QRPA-Jy, dQRPQ-NC) ⇒ Intermediate NMEs

Interacting Boson Model (IBM) ⇒ Close to QRPA results

J.D.Vergados, H. Ejiri, , F.Š., Int. J. Mod. Phys. E25, 1630007(2016)

	mean field meth.	ISM	IBM	QRPA
Large model space	yes	no	yes	yes
Constr. Interm. States	no	yes	no	yes
Nucl. Correlations	limited	all	restricted	restricted

Quenching of g_A

$g_{A}^{4} = (1.269)^{4} = 2.6$ Quenching of g_{A} (from exp.: $T_{1/2}^{0\nu}$ up 2.5 x larger) Strength of GT trans. (approx. given by Ikeda sum rule =3(N-Z)) $(g^{eff}{}_{A})^{4} = 1.0$ has to be quenched to reproduce experiment 25 $_{\Box}$ $^{76}_{32}\text{Ge}_{44} \Rightarrow$ standard QRPA $S_{\beta}^{-} - S_{\beta}^{+} = 3(N-Z) = 36$ exp. via (p,n) reaction 20 exp. via (³He,t) reaction $\langle 1_m^+ | \beta_{GT}^- | RPA \rangle |^2$ (4) transition virtual 5 76_{Ge} ⁷⁶As 76_{Se} 0 **Pauli blocking** 8 10 12 18 6 14 16 20E [MeV] **Cross-section for charge exchange reaction:** $\left[\frac{d\sigma}{d\Omega}\right] = \left[\frac{\mu}{\pi\hbar}\right]^2 \frac{k_f}{k} \operatorname{Nd} \left|V_{\sigma\tau}\right|^2 \left|\langle f | \sigma\tau| i\rangle\right|^2$ q = 0!!p n n largest at 100 - 200 MeV/A

Quenching of g_A (from theory: $T_{1/2}^{0\nu}$ up 50 x larger)

 $(g^{eff}_{A})^4 \simeq 0.66 (^{48}Ca), 0.66 (^{76}Ge), 0.30 (^{76}Se), 0.20 (^{130}Te) and 0.11 (^{136}Xe)$ The Interacting Shell Model (ISM), which describes qualitatively well energy spectra, does reproduce experimental values of $M^{2\nu}$ only by consideration of significant quenching of the Gamow-Teller operator, typically by 0.45 to 70%.

(g^{eff}_A)⁴ ≃ (1.269 A^{-0.18})4 = 0.063 (The Interacting Boson Model). This is an incredible result. The quenching of the axial-vector coupling within the IBM-2 is more like 60%.
 J. Barea, J. Kotila, F. Iachello, PRC 87, 014315 (2013).

It has been determined by theoretical prediction for the 2vββ-decay half-lives, which were based on within closure approximation calculated corresponding NMEs, with the measured half-lives.

Faessler, Fogli, Lisi, Rodin, Rotunno, F. Š, J. Phys. G 35, 075104 (2008).

 $(g^{eff}{}_{A})^{4} = 0.30$ and 0.50 for ¹⁰⁰Mo and ¹¹⁶Cd, respectively (The QRPA prediction). $g^{eff}{}_{A}$ was treated as a completely free parameter alongside g_{pp} (used to renormalize particl-particle interaction) by performing calculations within the QRPA and RQRPA. It was found that a least-squares fit of $g^{eff}{}_{A}$ and g_{pp} , where possible, to the β -decay rate and β +/EC rate of the J = 1⁺ ground state in the intermediate nuclei involved in double-beta decay in addition to the $2\nu\beta\beta$ rates of the initial nuclei, leads to an effective $g^{eff}{}_{A}$ of about 0.7 or 0.8.

A novel method to determine effective g_A

F. Š., R. Dvornický, D. Štefánik, A. Faessler, to be submitted

11/2/2017

Fedor Simkovic

Improved description of the 0νββ**–decay rate**

$$M_{GT}^{K,L} = m_e \sum_n M_n \frac{E_n - (E_i + E_f)/2}{[E_n - (E_i + E_f)/2]^2 - \varepsilon_{K,L}^2}$$

Let perform Taylor expansion

$$\frac{\varepsilon_{K,L}}{E_n - (E_i + E_f)/2} \quad \epsilon_{K,L} \in \left(-\frac{Q}{2}, \frac{Q}{2}\right)$$

We get

$$\left[T_{1/2}^{2\nu\beta\beta}\right]^{-1} \simeq \left(g_A^{\text{eff}}\right)^4 \left|M_{GT-3}^{2\nu}\right|^2 \frac{1}{\left|\xi_{13}^{2\nu}\right|^2} \left(G_0^{2\nu} + \xi_{13}^{2\nu}G_2^{2\nu}\right)$$

$$M_{GT-1}^{2\nu} = \sum_{n} M_{n} \frac{1}{(E_{n} - (E_{i} + E_{f})/2)}$$
$$M_{GT-3}^{2\nu} = \sum_{n} M_{n} \frac{4 m_{e}^{3}}{(E_{n} - (E_{i} + E_{f})/2)^{3}} \qquad \xi_{13}^{2\nu} = \frac{M_{GT-3}^{2\nu}}{M_{GT-1}^{2\nu}}$$

The g_A^{eff} can be deterimed with measured half-life and ratio of NMEs and calculated NME dominated by transitions through low lying states of the intermediate nucleus (ISM?)

The running sum of the $2\nu\beta\beta$ -decay NMEs

Normalized to unity different partial energy distributions

ξ_{13} tell us about importance of higher lying states of int. nucl.

Double beta decay with emission of a single electron

11/2/2017

Fedor Simkovic

47

Double Beta Decay with emission of a single electron

A. Babič, M.I. Krivoruchenko, F.Š., tobe submitted to PRC

[Jung *et al.* (GSI), 1992] observed beta decay of ${}^{163}_{66}$ Dy⁶⁶⁺ ions with Electron Production (EP) in K or L shells: $T^{EP}_{1/2} = 47$ d

Bound-state double-beta decay $0\nu EP\beta^-$ ($2\nu EP\beta^-$) with EP in available $s_{1/2}$ or $p_{1/2}$ subshell of daughter 2+ ion:

Search for possible manifestation in single-electron spectra...

48

$0\nu EP\beta^{-}$ Single-Electron Spectrum (⁸²Se)

 $0\nu\beta^{-}\beta^{-}$ and $0\nu EP\beta^{-}$ single-electron spectra $1/\Gamma^{0\nu\beta\beta} d\Gamma/dE$ vs. electron kinetic energy $E - m_e$ for ⁸²Se (Q = 2.996 MeV)

$0\nu EP\beta^-$ Half-Lives

 $0\nu\beta^{-}\beta^{-}$ and $0\nu EP\beta^{-}$ half-lives $T_{1/2}^{0\nu\beta\beta}$ and $T_{1/2}^{0\nu EP\beta}$ estimated for $\beta^{-}\beta^{-}$ isotopes with known NME $|M^{0\nu\beta\beta}|$, assuming unquenched $g_{A} = 1.269$ and $|m_{\beta\beta}| = 50 \text{ meV}$

$2\nu EP\beta^{-}$ Single-Electron Spectrum (⁸²Se)

 $2\nu\beta^{-}\beta^{-}$ and $2\nu EP\beta^{-}$ single-electron spectra $1/\Gamma d\Gamma/dE$ vs. electron kinetic energy $E - m_e$ for ⁸²Se (Q = 2.996 MeV)

$2\nu EP\beta^{-}$ Half-Lives predictions (independent on g_A and value of NME)

 $2\nu\beta^{-}\beta^{-}$ and $2\nu EP\beta^{-}$ half-lives $T_{1/2}^{2\nu\beta\beta}$ and $T_{1/2}^{2\nu EP\beta}$ calculated for $\beta^{-}\beta^{-}$ isotopes observed experimentally, assuming unquenched $g_{A} = 1.269$

Nuclear structure studies within schematic models

Understanding of the $2\nu\beta\beta$ -decay NMEs is of crucial importance for correct evaluation of the $2\nu\beta\beta$ -decay NMEs

 $(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\overline{\nu}_e$

Both 2νββ and 0νββ operators connect the same states. Both change two neutrons into two protons.

Explaining $2\nu\beta\beta$ -decay is necessary but not sufficient

There is no reliable calculation of the 2vbb-decay NMEs

Calculation via intermediate nuclear states: **QRPA** (sensitivity to pp-int.) **ISM** (quenching, truncation of model space, spin-orbit partners)

Calculation via closure NME: IBM, PHFB

No calculation: EDF

11/2/2017

Fedor Simkovic

The DBD Nuclear Matrix Elements and the SU(4) symmetry D. Štefánik, F.Š., A. Faessler, PRC 91, 064311 (2015)

Suppression of the Two Neutrino Double Beta Decay by Nuclear Structure Effects P. Vogel, M.R. Zirnbauer, PRL (1986) 3148

 $\begin{array}{l} g_{pair} \text{-} strength \ of \ isovector \ like \ nucleon \ pairing \ (L=0, \ S=0, \ T=1, \ M_T=\pm 1) \\ g_{pp}^{\ T=1} \text{-} \ strength \ of \ isovector \ spin-0 \ pairing \ (L=0, \ S=0, \ T=1, \ M_T=0 \\ g_{pp}^{\ T=0} \text{-} \ strength \ of \ isoscalar \ spin-1 \ pairing \ (L=0, \ S=1, \ T=0) \\ g_{ph} \text{-} \ strength \ of \ particle-hole \ force \end{array}$

M_F and M_{GT} do not depend on the mean-field part of H and are governed by a weak violation of the SU(4) symmetry by the particle-particle interaction of H

$$\begin{split} M_F^{2\nu} &= -\frac{48\sqrt{\frac{33}{5}}\left(g_{pair} - g_{pp}^{T=1}\right)}{(5g_{pair} + 3g_{ph})(10g_{pair} + 6g_{ph})} \\ M_{GT}^{2\nu} &= \frac{144\sqrt{\frac{33}{5}}}{5g_{pair} + 9g_{ph}} \begin{cases} \frac{(g_{pair} - g_{pp}^{T=0})}{(10g_{pair} + 20g_{ph})} \\ + \frac{2g_{ph}(g_{pair} - g_{pp}^{T=1})}{(10g_{pair} + 20g_{ph})(10g_{pair} + 6g_{ph})} \end{split}$$

11/2/2017

Reproduction of exact solutions of Lipkin model by nonlinear higher random-phase approximation

J. Terasaki, A. Smetana, F. Š., M.I. Krivoruchenko, arXiv:1701.08368 [nucl-th]

Useful for test of theory
often used.
H.J. Lipkin et al., N.P.
62, 188 (1965)Lipkin model
Level index
1

$$H = \varepsilon J_z + \frac{V}{2} \left(J_+^2 + J_-^2 \right)$$

The nonlinear phonon operator

$$Q_{k}^{o\dagger} = \sum_{l=1}^{n} (X_{2l-1}^{k} \mathcal{J}_{+}^{2l-1} + Y_{2l-1}^{k} \mathcal{J}_{-}^{2l-1})$$

$$(\text{odd-order subspace})$$

$$Q_{k}^{e\dagger} = c_{k} + \sum_{l=1}^{n} (X_{2l}^{k} \mathcal{J}_{+}^{2l} + Y_{2l}^{k} \mathcal{J}_{-}^{2l}),$$

$$(\text{even-order subspace})$$

vel index

$$|\psi_{0}\rangle$$
Energy
 $\varepsilon/2$

$$0 \quad \varepsilon/2$$

$$0 \quad \varepsilon/2$$

$$m = 1, \cdots \qquad N$$

$$-\varepsilon/2$$

$$M = 1, \cdots \qquad N$$

$$[J_{z}, J_{+}] = J_{+}$$

$$[J_{z}, J_{-}] = -J_{-}$$

$$[J_{+}, J_{-}] = 2J_{z}$$

RPA ground state

$$Q_{k}|\Psi_{0}\rangle = 0$$
60

Eigen states, wave functions, total energies, excitation energies and phonon-creation operators obtained for N=2 by the nonlinear higher RPA.

Eigenstate	Eigenstate Wave function		Total energy	
Ground	$ \Psi_0\rangle = \frac{V}{\sqrt{2E_{10}^o(E)}}$	$-E_{10}^{o}$		
Odd-order excited	d-order excited $Q_1^{o\dagger} \Psi_0\rangle = \frac{1}{\sqrt{2}} J_+ \psi_0\rangle$		0	
Even-order excited	$Q_1^{e\dagger} \Psi_0\rangle = \frac{1}{\sqrt{2E_{10}^o}}$	E_{10}^{o}		
Eigenstate	Excitation energy	Phonon-creation op	oerator	
Ground	0			
Odd-order excited	$E_{10}^o = \sqrt{\varepsilon^2 + V^2}$	$Q_1^{o\dagger} = \frac{\sqrt{E_{10}^o}}{2\varepsilon} \Big(\frac{V}{ V } \sqrt{E_{10}^o + \varepsilon} J_+ + \sqrt{E_{10}^o - \varepsilon} J_+ \Big)$		
Even-order excited	$E_{10}^{e} = 2E_{10}^{o}$	$Q_1^{e\dagger} = \frac{V}{ V } \left(\frac{V}{2\varepsilon} + \frac{E_{10}^o + \varepsilon}{4\varepsilon} J_+^2 \right)$	$+\frac{E_{10}^o-\varepsilon}{4\varepsilon}J^2$	

J. Terasaki, A. Smetana, F. Š., M.I. Krivoruchenko, arXiv:1701.08368 [nucl-th]

61

Instead of Conclusions

Progress in nuclear structure calculations is highly required

We are at the beginning of the **BSM** Road...

11/2/2017