DUNE Physics and Detectors

Stefan Söldner-Rembold Neutrino Colloquium, Prague 2 November 2017

$\begin{aligned} \textbf{Testing the standard "three-flavour" paradigm} \\ \textbf{U}_{PMNS} &= \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{aligned}$

CP Violation in the lepton sector might provide support for *Leptogenesis* as mechanism to generate the Universe's matter-antimatter asymmetry.

CP Violation:
$$\delta \neq \{0, \pi\}$$
 $s_{ij} = \sin \theta_{ij}; c_{ij} = \cos \theta_{ij}$

$\begin{aligned} \textbf{Testing the standard "three-flavour" paradigm} \\ \textbf{U}_{PMNS} &= \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{aligned}$

CP Violation in the lepton sector might provide support for *Leptogenesis* as mechanism to generate the Universe's matter-antimatter asymmetry.

CP Violation:
$$\delta \neq \{0, \pi\}$$
 $s_{ij} = \sin \theta_{ij}; c_{ij} = \cos \theta_{ij}$

Caveat:

No direct evidence for *Leptogenesis*, since a model is needed to connect the low-scale CPV observed here to high-scale CPV for heavy neutrinos that lead to *Leptogenesis*.

Optimizing L/E for neutrino oscillations

see D. Wark

$$\frac{\Delta m_{31}^2 L}{4E} \sim \frac{\pi}{2} \quad \Longrightarrow \quad E_{\rm v} < 1 \,\,{\rm GeV}$$

- no matter effects; first oscillation maximum.
- use narrow width beam (off axis).

Water Cherenkov

L > 1000 km

L ≈ 200 km

$$\frac{\Delta m_{31}^2 L}{4E} \sim \frac{\pi}{2} \quad \Longrightarrow \quad E_{\rm v} > 2 \,{\rm GeV}$$

- mum. Liquid argon
- matter effects; first and second oscillation maximum.
- use broad-band beam (on axis).
- unfold CP and MO effects through energy dependence.

v_e appearance gives access to δ

- Approximately 40 kt fiducial mass liquid argon Far Detector.
- Located 1300 km baseline at SURF's 1478 m level (2,300 mwe).
- Compare $\nu_{\mu} \rightarrow \nu_{e}$ and $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ oscillations.

Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report, Volume 4 The DUNE Detectors at LBNF, arXiv:1601.02984.

LBNF/DUNE – Fermilab in

DUNE Far Detector neutrino flux

Beam (LBNF):

- 60-120 GeV proton beam energy
- 1.2 MW from Day 1
- upgradeable to 2.4 MW
- assume running of 3.5
 years each in neutrino and anti-neutrino mode.

DUNE oscillation strategy

- Wide-band beams allows us to measure v_e appearance and v_μ disappearance over range of energies
- Mass ordering and CP violation effects can be separated

Mass ordering and CPV

Width of the band represents the range of sensitivities for the 90% C.L. range in ϑ_{23} value

Sensitivity over time

Mass Hierarchy Sensitivity 12 d_{cP} = -p/2 **DUNE Sensitivity (Staged) DUNE Sensitivity (Staged)** d_{cP} = -p/2 50% of d_{CP} values 12—Normal Ordering 100% of d_{CP} values Normal Ordering $sin^2 2q_{13} = 0.085 \pm 0.003$ $sin^2 2q_{13} = 0.085 \pm 0.003$ 75% of dcp values Nominal Analysis **Nominal Analysis** $sin^2q_{22} = 0.441 \pm 0.042$ **10** $-\sin^2 q_{23} = 0.441 \pm 0.042$ ----- $q_{13} \& q_{23}$ unconstrained ----- q₁₃ & q₂₃ unconstrained 10 ~7 years D C² ~1 year D C² Ш S ~6 years 14 5 9 2 8 10 12 2 3 4 6 7 8 4 6 Years Years

CP Violation Sensitivity

Staged approach: interesting measurements will be made throughout the DUNE physics programme!

Beyond discovery: precision measurements

Comparable precision to quark sector

DUNE Collaboration

1000 collaborators from 30 countries

DUNE Collaboration

1000 collaborators from 30 countries

Stefan Söldner-Rembold

DUNE Near Detector options

- Liquid Argon TPC
 - Modular liquid argon design (ArgonCube) to provide identical near/far target
 - Short drifts and pixel readout to deal with high occupancy environment
- Straw Tube Tracker
 - NOMAD-inspired type fine grain tracker
 - Magnetized detector for sign discrimination
- High Pressure Gas Argon TPC
 - High pressure TPC keeps neutrino yield high while providing excellent 3d vertex information
 - Argon nuclear target allows for straightforward near/far extrapolation
- Other technologies
 - Scintillating Plastic Tracker
 - "DUNE-PRISM"

DUNE Near Detector

- A hybrid detector is definite possibility.
- Series of workshops to select options and prepare for CDR (2018), TDR (2020).
- Near Detector will be placed at about 575m downstream of beam.

DUNE Near Detector

- A hybrid detector is definite possibility.
- Series of workshops to select options and prepare for CDR (2018), TDR (2020).
- Near Detector will be placed at about 575m downstream of beam.

The Near Detector will provide:

- constraints on cross sections and neutrino flux.
- a rich non-oscillation neutrino physics programme.
- >100 million interactions over a wide range of energies.
- strong constraints on systematics: the difference between 3% and 1% systematic can have as much as a 30% increase in the amount of required beam time for 5 σ discovery of δ_{CP}

1D Data-inspired Responses

Time Projection Chamber (SP)

Time Projection Chamber (DP)

- Larger drift distance (12 m)– higher fields (300 kV)
- Potentially better signal to noise
- Readout/HV access through chimneys on top.

A liquid-argon "bubble chamber"

Sanford Underground Research Facility (SURF)

- Experimental facilities at a level of 1478 m, located in South Dakota
- Two vertical access shafts currently being refurbished
- Large excavation starts at SURF in 2017

1478 m

Underground Laboratory SURF

DUNE Far Detector site

- Sanford Underground Research Facility (SURF), South Dakota
- Four caverns on 4850 level (~ 1 mile underground)

Far Detector lay-out

Four caverns hosting four independent 10-kt (fiducial mass) Far Detector modules: Allows for staged construction of the Far Detector Gives flexibility for evolution of LArTPC technology design Four identical cryostats: 15.1 (W) x 14.0 (H) x 62 (L) m³

- Four 10-kt modules will be similar but not identical

Free-standing steel cryostat

External Dimensions: 19.1m x 18.0m x 66.0m

2000 trucks with 20 ton of LAr

First Detector: single-phase

- 3 Anode Plane Assemblies (APA) wide (wire planes)
 - Cold electronics 384,000 channels
- Cathode planes (CPA) at 180 kV
 - 3.6 m max drift length

APA Construction Sites

- 150 APAs and 200 CPAs per module.
- Large production site being set up at Daresbury Laboratory (UK) between Manchester and Liverpool.
- At least 2 Production Sites in US.

Second Detector: Dual-phase

Photon detection

Photon detection

Photon detection

- 20,000 photons/MeV
- VUV needs wavelength shifting to visible spectrum (TBP).
- Light detection system (PMT, SiPMs, scintillator bars) still under development.
- Provides timing; event reconstruction.

tprompt = 6 ns

Other challenges: event reconstruction

- Need to reconstruct tracks and showers, measure their energy and perform particle identification.
- Complex event topologies require sophisticated algorithms (e.g., CNNs).

Other challenges: data acquisition

Detector always live

- Pre-trigger TPC data rate of about 1 TB/s.
- Low underground event rate (one beam spill per second, one cosmic ray per minute) allows online data processing.
- Supernova trigger: 10 TB over 10 s.

Non-beam physics in DUNE – supernova neutrinos

Astrophysical neutrinos, e.g. from a galactic supernova, probe physics at astrophysical scales:

- 99% of the binding energy of a corecollapse supernova emitted through neutrinos (0.01% as light).
- Probes both supernova properties and neutrino physics.

SN1987A, about 24 neutrinos observed, 3 hours before photons.

Core-collapse supernova

- Neutrino emission lasts ≈10 sec
- 1-3 SNs/century in our Galaxy (≈10 kpc)

SN1987A: detected \approx 20 neutrino events in total (essentially anti-v_e)

Supernova neutrino signal in LAr

Main detection process:

$$\nu_e + {}^{40}\text{Ar} \rightarrow e^- + {}^{40}\text{K}^*$$

- Reconstruct photons from nuclear de-excitations.
- Need to understand underlying nuclear physics.
- Possible low-energy background from ³⁹Ar.

SN neutrino spectra in DUNE

- SN at 10 kpc in DUNE (40 kt)
- Strong dependence on MH

- Required energy resolution < 10%
- Energy threshold ~ 5 MeV

Time-integrated energy spectrum

Time-dependent signal

Garching model, ICARUS energy resolution, 5 MeV threshold

SN neutrino spectra in DUNE

- SN at 10 kpc in DUNE (40 kt)
- Strong dependence on MH

- Required energy resolution < 10%
- Energy threshold ~ 5 MeV

Time-dependent signal

Garching model, ICARUS energy resolution, 5 MeV threshold

"Instant" determination of mass hierarchy

Nucleon decay

- Test of fundamental symmetries
 - Matter-antimatter asymmetry requires baryon number nonconservation (Sakharov Conditions)
- Well-motivated Grand Unification Theory models suggest proton decay may exist and be observable
 - GUTs make specific predictions about proton decay modes and branching fractions that can be tested in DUNE
- Many possible decay modes, kaon modes best suited for argon. Almost background free

Proton Decay Searches

Baryon number violation

- A low-background mode with high detection efficiency.
- DUNE will do well in decay modes with kaons, modes with neutrinos, and with complicated topologies.

Neutron-antineutron oscillations

- Current best limit from Super-K
- Signature in LArTPC is spherical cascade of pions.

Far Detector Development Path

ProtoDUNEs at CERN's North Area

ProtoDUNE cryostats

ProtoDUNE: Dual-phase demonstrator

Validate construction techniques and operational performance of full-scale module

Calibrate detector with charged-particle beam

6 m x 6 m anode plane made of four 3 m x 3 m independent readout units

6 m vertical drift => 300 kV cathode voltage

ProtoDUNE: Single-phase demonstrator

- Active volume: 6 x 7 x 7 m³
- 6 Anode Plane Assemblies
 - 6 m high x 2.3 m wide
- 6 Cathode Plane Assemblies
 - 3 m high x 2.3 m wide
- Cathode at -180 kV for 3.5 m drift
- First US-built APA delivered and tested.
- Will be ready for data taking in LS2.

Far Detector Development Path

LAr TPC Detectors at Fermilab (short-baseline)

Michel electrons

Textbook plot !

Impact of Sterile Neutrinos on DUNE

Bands show variation of CP phases for 3+0 and 3+1 scenarios with 1 eV sterile neutrino.

- Presence of sterile neutrinos creates degeneracies when interpreting data in terms of CP violation.
- Testing the sterile neutrino sector at the SBN is an important input for DUNE.

Technical Design Report (TDR)

- This summer, several international consortia were formed:
 - Single phase: APA, Photon Detection system, TPC Electronics
 - Dual phase: CRP, Photon Detection system, TPC Electronics
 - Joint: HV System, DAQ, Slow Controls & Cryogenic Instrumentation
- Consortia will produce a Technical Proposal (TP) in 2018 and a Technical Design Report in 2019.

DUNE Timeline

Summary

Physics milestone

Exposure kt-MW-year

$1^{\circ} \theta_{23}$ resolution ($\theta_{23} = 42^{\circ}$)	1 year	45
CPV at 3σ ($\delta_{ m CP}=+\pi/2$)		60
CPV at 3σ ($\delta_{ m CP}=-\pi/2$)	2 years	100
CPV at 5σ ($\delta_{ m CP}=+\pi/2$)		210
MH at 5σ (worst point)	5 years	230
10° resolution ($\delta_{\rm CP}=0$)		290
CPV at 5σ ($\delta_{ m CP}=-\pi/2$)	7 years	320
CPV at 5σ 50% of $\delta_{ m CP}$		550
Reactor θ_{13} resolution		850
$(\sin^2 2\theta_{13} = 0.084 \pm 0.003)$		
CPV at 3σ 75% of $\delta_{ m CP}$		850