

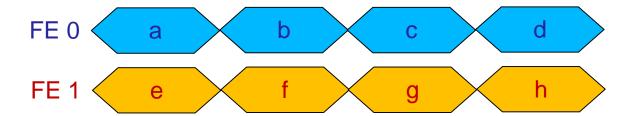
MCH CRU Firmware and Data Format

C. Flouzat CEA/DRF/IRFU

Summary

- Data Format
- MCH specific developments for CRU
- Work Ongoing

Data Format



Raw Data out of the GBTx

MCH uses the GBTx data format with only 80 bits (i.e. no wide bus mode)

→ Each frontend board uses 2 bits inside the 80 bits

79	78	 	 	3	2	1	0
				е	f	а	b
				g	h	С	d

Data are sent LSB first

Front End Chip Data Format & Decoding

SAMPA Packet Format

SYNC Packets

Identified 50 bit (to find the start of packets within the serial stream)

HB Packets

50 bits with a given packet type (3 bit) and the BX counter value sampled for pulse

Data Packets

50 bits followed by up to 1000 10 bit packets → variable length many types encoded with packet ID (3 bits)

→ Format doesn't allow to lose synchronization (or we lose the start of the packets)

Trigger Mode

SYNC packets received when Idle: easy to synchronize, even offline watch for a 50 bit identified packet

Continuous Mode

SYNC packets received only if no relevant data seen by Front End Chip

→ need to have a machine to keep synchronized onboard FPGA (GRORC/CRU)

Drop the SYNC packets to save bandwidth

MCH Synchronization & chip Identification

Synchronization between SAMPA chips and ALICE

With the HB packet: a counter value is chopped when receiving a HeartBeat pulse

This value is inserted in the data stream

A chip ID + Bunch Crossing Counter is encoded inside all data packets

No Physics Trigger information

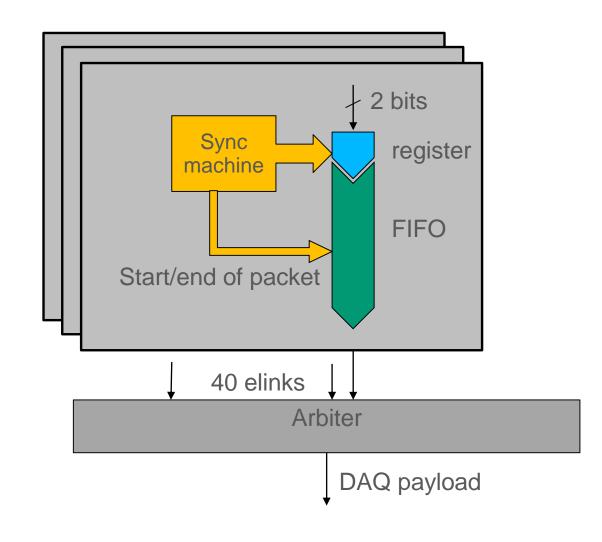
Work needed to decide the reaction system if BX value doesn't correspond bw FEC's

Chip identification

A chip ID for each ribbon is encoded

CRU has to add the elink number and the fiber number

CRU Firmware: MCH specific design



Keep Serial Synchronization and drop Empty Packets

Startup or Reset

Find the 50 bits of the SYNC packets

Along Acquisition

Work Ongoing

Consolidate this proposal with O2 team

Implement this module on current GRORC platform

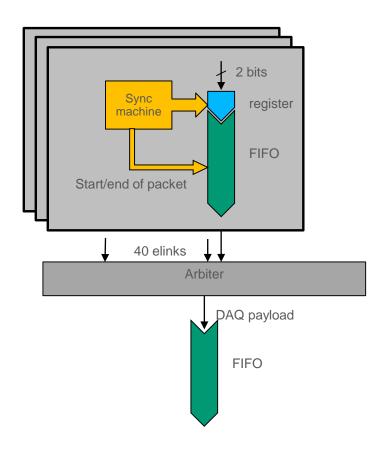
Discussed with Filippo Costa.

Seems feasible before summer 2017

Choose the right memory size

Either huge FIFO for each elink

Or huge FIFO after Arbiter


Simpler system (10 bit packets)

Tradeoff to be found with data overhead involved

Remaining room on CRU's FPGA?

Order the necessary computer and software

To be ready as soon as we get a CRU prototype

Thank you for your attention.

Questions?