Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs

Optimizing cut-and-count

ML Tools to discover $pp \rightarrow hh$

Further research

Discovering Double Higgs Production with Machine Learning Tools

Alexandre Alves

UNIFESP-Diadema

June 22th, 2017

Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs

Optimizing cut-and-count

ML Tools to discover $pp \rightarrow hh$

Further research

Outline

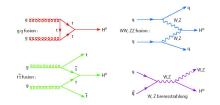
- Why double Higgs production is important?
- Production and decays of Higgs bosons pairs
- Optimizing cut-and-count
- ML tools to discover pp
 ightarrow HH
- Further research

Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs


Optimizing cut-and-count

ML Tools to discover $pp \rightarrow hh$

Further research

Scalar potential

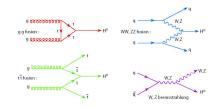
After Higgs boson discovery, it remains, for example:

Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs


Optimizing cut-and-count

ML Tools to discover $pp \rightarrow hh$

Further research

Scalar potential

After Higgs boson discovery, it remains, for example:

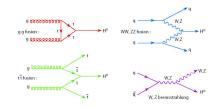
Measuring its properties like SPIN and COUPLINGS

Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs


Optimizing cut-and-count

ML Tools to discover $pp \rightarrow hh$

Further research

Scalar potential

After Higgs boson discovery, it remains, for example:

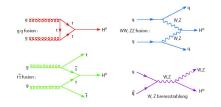
- Measuring its properties like SPIN and COUPLINGS
- Determining its Total Width and observe all the decay channels

Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs


Optimizing cut-and-count

ML Tools to discover $pp \rightarrow hh$

Further research

Scalar potential

After Higgs boson discovery, it remains, for example:

- Measuring its properties like SPIN and COUPLINGS
- Determining its Total Width and observe all the decay channels
- Studying its Self-Interactions Stability, Inflation, BSM

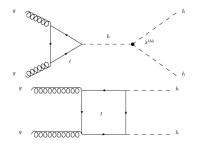
$$V(|H|^2) = \mu^2 |H|^2 + \frac{1}{2}\lambda |H|^4, \ H \to h(x) + v$$
$$= m_h^2 h^2 + \lambda_{hhh} hhh + \lambda_{hhhh} hhh$$

Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs

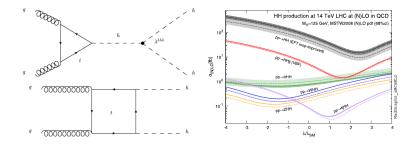

Optimizing cut-and-count

ML Tools to discover $pp \rightarrow hh$

Further research

Measuring λ_{hhh}

SM Double Higgs Production @ LHC


Alexandre Alves

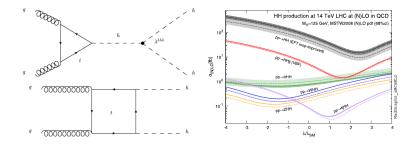
Outline

- Why double Higgs production is important?
- Production and decays of Higgs bosons pairs
- Optimizing cut-and-count
- ML Tools to discover $pp \rightarrow hh$
- Further research

Measuring λ_{hhh}

SM Double Higgs Production @ LHC

Destructive interference between triangle and box in the SM


Alexandre Alves

Outline

- Why double Higgs production is important?
- Production and decays of Higgs bosons pairs
- Optimizing cut-and-count
- ML Tools to discover $pp \rightarrow hh$
- Further research

Measuring λ_{hhh}

SM Double Higgs Production @ LHC

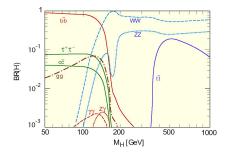
- Destructive interference between triangle and box in the SM
- current status: $|\lambda \lambda_{SM}|/\lambda_{SM} \sim 30\%$ @95% CL

Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs


Optimizing cut-and-count

ML Tools to discover $pp \rightarrow hh$

Further research

Measuring λ_{hhh}

Decay channels

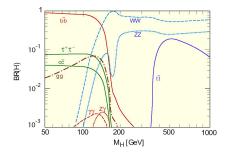
• $hh \rightarrow b\bar{b}b\bar{b}$: largest BR, \sim 32%, large QCD backgrounds

Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs


Optimizing cut-and-count

ML Tools to discover $pp \rightarrow hh$

Further research

Measuring λ_{hhh}

Decay channels

• $hh \rightarrow b\bar{b}b\bar{b}$: largest BR, \sim 32%, large QCD backgrounds

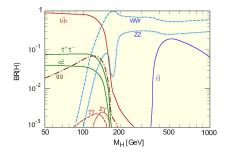
• $hh \rightarrow b\bar{b}W^+W^-$: decent BR, but $t\bar{t}$ is background

Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs


Optimizing cut-and-count

ML Tools to discover $pp \rightarrow hh$

Further research

Measuring λ_{hhh}

Decay channels

• $hh
ightarrow b ar{b} b ar{b}$: largest BR, \sim 32%, large QCD backgrounds

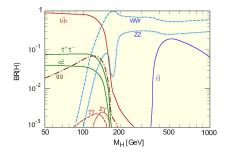
- $hh
 ightarrow b ar{b} W^+ W^-$: decent BR, but $t ar{t}$ is background
- $hh \rightarrow b\bar{b}\tau^+\tau^-$: promising with efficient τ, b -tagging

Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs


Optimizing cut-and-count

ML Tools to discover $pp \rightarrow hh$

Further research

Measuring λ_{hhh}

Decay channels

- $hh
 ightarrow b ar{b} b ar{b}$: largest BR, \sim 32%, large QCD backgrounds
- $hh
 ightarrow b ar{b} W^+ W^-$: decent BR, but $t ar{t}$ is background
- $hh \rightarrow b\bar{b}\tau^+\tau^-$: promising with efficient τ, b -tagging
- $hh \rightarrow b\bar{b}\gamma\gamma$: BR \sim 0.26%, but it's very clean!
- $b\bar{b}\gamma\gamma$ has the best prospects, around 2σ @ 14TeV HL-LHC

Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs

Optimizing cut-and-count

ML Tools to discover $pp \rightarrow hh$

Further research

Measuring λ_{hhh}

- Signal+Backgrounds with Mad5aMC@NLO+Pythia6+Delphes3
- NLO and NNLO K-factors, but without top mass effects
- All dominant and subdominant backgrounds taken into account

Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs

Optimizing cut-and-count

ML Tools to discover $pp \rightarrow hh$

Further research

Measuring λ_{hhh}

- Signal+Backgrounds with Mad5aMC@NLO+Pythia6+Delphes3
- NLO and NNLO K-factors, but without top mass effects
- All dominant and subdominant backgrounds taken into account

Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs

Optimizing cut-and-count

 $\begin{array}{l} \text{ML Tools to} \\ \text{discover } pp \ \rightarrow \ hh \end{array}$

Further research

Measuring λ_{hhh}

- Signal+Backgrounds with Mad5aMC@NLO+Pythia6+Delphes3
- NLO and NNLO K-factors, but without top mass effects
- All dominant and subdominant backgrounds taken into account
- $b\bar{b}\gamma\gamma$, $c\bar{c}\gamma\gamma$, $jj\gamma\gamma$, $bj\gamma\gamma \implies c,j$ mistagged as b

Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs

Optimizing cut-and-count

 $\begin{array}{l} \text{ML Tools to} \\ \text{discover } \textit{pp} \rightarrow \textit{hh} \end{array}$

Further research

Measuring λ_{hhh}

- Signal+Backgrounds with Mad5aMC@NLO+Pythia6+Delphes3
- NLO and NNLO K-factors, but without top mass effects
- All dominant and subdominant backgrounds taken into account
- $b\bar{b}\gamma\gamma$, $c\bar{c}\gamma\gamma$, $jj\gamma\gamma$, $bj\gamma\gamma \implies c,j$ mistagged as b
- $t\bar{t}h$, $c\bar{c}\gamma j$, $b\bar{b}h$, Zh, $b\bar{b}jj$ \Longrightarrow small xsec, $P(j
 ightarrow \gamma) \sim 10^{-4}$
- Simulations checked against 2 theoretical and 2 exp works

Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs

Optimizing cut-and-count

 $\begin{array}{l} \text{ML Tools to} \\ \text{discover } \textit{pp} \rightarrow \textit{hh} \end{array}$

Further research

Measuring λ_{hhh}

Our simulations for the $b\bar{b}\gamma\gamma$ channel (1704.07395)

- Signal+Backgrounds with Mad5aMC@NLO+Pythia6+Delphes3
- NLO and NNLO K-factors, but without top mass effects
- All dominant and subdominant backgrounds taken into account
- $b\bar{b}\gamma\gamma$, $c\bar{c}\gamma\gamma$, $jj\gamma\gamma$, $bj\gamma\gamma \implies c,j$ mistagged as b
- $t\bar{t}h$, $c\bar{c}\gamma j$, $b\bar{b}h$, Zh, $b\bar{b}jj$ \Longrightarrow small xsec, $P(j \rightarrow \gamma) \sim 10^{-4}$
- Simulations checked against 2 theoretical and 2 exp works
- After basic selections and 3 ab⁻¹

 $p_T(j) > 20 \text{ GeV}, \ p_T(\gamma) > 20 \text{ GeV}, \ |\eta(j,\gamma)| < 2.5$ 100 GeV $< M_{bb(\gamma\gamma)} < 150 \text{ GeV}$

signal	$b\bar{b}\gamma\gamma$	$c\bar{c}\gamma\gamma$	$jj\gamma\gamma$	$b\bar{b}\gamma j$	$t\bar{t}h$	$c\bar{c}\gamma j$	$b\bar{b}h$	Zh	total backgrounds
42.6	1594.5	447.7	160.3	137	101.1	38.2	2.4	1.8	2483

Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs

Optimizing cut-and-count

ML Tools to discover $pp \rightarrow hh$

Further research

Measuring λ_{hhh}

Updating previous results

• Our simulations with cut analysis of previous works

Reference	Kinematic cuts	$AMS(\sigma) (S/B)$
(A) [1]	$p_{T_{\gamma(b)}} > 20(45) \text{ GeV}, \eta_{b,\gamma} < 2.5$ $ M_{bb} - m_h < 20 \text{ GeV}, M_{\gamma\gamma} - m_h < 2.3 \text{ GeV}$ $\Delta R_{b\gamma} > 1.0, \Delta R(\gamma\gamma) < 2.0$	1.54(0.30)
(B) [2]	$\begin{array}{l} p_{T_{b,\gamma}} > 50 ~{\rm GeV}, ~ \eta_{b,\gamma} < 2.5, ~ \Delta R_{b\gamma} > 0.4, ~ \Delta R(bb) < 2.5 \\ 110 < M_{bb} < 135 ~{\rm GeV}, ~ M_{\gamma\gamma} - m_h < 5 ~{\rm GeV}, ~ M_{bb\gamma\gamma} > 350 ~{\rm GeV} \\ \eta_H < 2, ~ P_{T_H} > 100 ~{\rm GeV} \end{array}$	1.33(0.39)
(C) [3]	$\begin{array}{l} p_{Tb,\gamma} > 30 \ \mathrm{GeV}, \ \eta_{b,\gamma} < 2.5 \\ M_{bb} - m_h < 12.5 \ \mathrm{GeV}, \ M_{\gamma\gamma} - m_h < 5 \ \mathrm{GeV} \\ M_{bb\gamma\gamma} > 350 \ \mathrm{GeV} \end{array}$	1.51(0.17)
(D) [4]	$\begin{array}{l} p_{T_{1(2)}} > 30(50) \ {\rm GeV}, \ \eta_{b,\gamma} < 2.4 \\ \Delta R_{b\gamma} > 1.5, \ \Delta R(bb,\gamma\gamma) < 2 \\ M_{bb} - m_{h} < 20 \ {\rm GeV}, \ M_{\gamma\gamma} - m_{h} < 5 \ {\rm GeV} \end{array}$	1.76(0.27)
ATLAS [5]	$\begin{array}{l} p_{T_{\gamma}} > 30(30) \; {\rm GeV}, p_{T_{\gamma}} > 40(25) \; {\rm GeV}, \eta_{b,\gamma} < 2.4 \\ \Delta R_{b\gamma} > 0.4, \Delta R(bb,\gamma\gamma) < 2, p_{T_{bb,\gamma\gamma}} > 110 \; {\rm GeV} \\ M_{bb} - m_{h} < 25 \; {\rm GeV}, 123 < M_{\gamma\gamma} < 128 \; {\rm GeV} \end{array}$	1.73(0.28)

Best current result for this channel $\sim 1.8\sigma$

Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs

Optimizing cut-and-count

ML Tools to discover $pp \rightarrow hh$

Further research

Cut-and-count, an art?

Deciding the cut selection to optimize signal significance

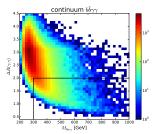
Alexandre Alves

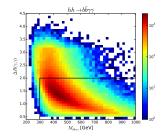
Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs

Optimizing cut-and-count


ML Tools to discover $pp \rightarrow hh$


Further research

Cut-and-count, an art?

Deciding the cut selection to optimize signal significance

- Most widely employed technique in particle pheno
- How is it exactly done? By eye! Huge waste of data (\$\$)

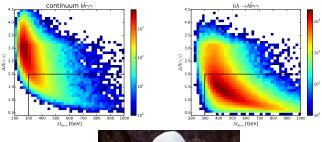
Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs

Optimizing cut-and-count


ML Tools to discover $pp \rightarrow hh$

Further research

Cut-and-count, an art?

Deciding the cut selection to optimize signal significance

- Most widely employed technique in particle pheno
- How is it exactly done? By eye! Huge waste of data (\$\$)

Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs

Optimizing cut-and-count

ML Tools to discover $pp \rightarrow hh$

Further research

Cut-and-count should be a science!

Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs

Optimizing cut-and-count

ML Tools to discover $pp \rightarrow hh$

Further research

Cut-and-count should be a science!

Tuning cut thresholds

• Simple idea: let's tune the cut thresholds!

Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs

Optimizing cut-and-count

ML Tools to discover $pp \rightarrow hh$

Further research

Cut-and-count should be a science!

- Simple idea: let's tune the cut thresholds!
- Problem :(prohibitively large grids, $\mathcal{O}(10^{14})$ points

Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs

Optimizing cut-and-count

ML Tools to discover $pp \rightarrow hh$

Further research

Cut-and-count should be a science!

- Simple idea: let's tune the cut thresholds!
- Problem :(prohibitively large grids, $\mathcal{O}(10^{14})$ points
- Solution ;) let's ask data scientists

Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs

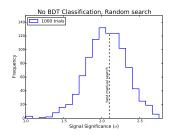
Optimizing cut-and-count

ML Tools to discover $pp \rightarrow hh$

Further research

Cut-and-count should be a science!

- Simple idea: let's tune the cut thresholds!
- Problem :(prohibitively large grids, $\mathcal{O}(10^{14})$ points
- Solution ;) let's ask data scientists
- Bayesian optimization algorithms do the job HyperOpt


Alexandre Alves

Outline

- Why double Higgs production is important?
- Production and decays of Higgs bosons pairs
- Optimizing cut-and-count
- ML Tools to discover $pp \rightarrow hh$
- Further research

Cut-and-count should be a science!

- Simple idea: let's tune the cut thresholds!
- Problem :(prohibitively large grids, $\mathcal{O}(10^{14})$ points
- Solution ;) let's ask data scientists
- Bayesian optimization algorithms do the job HyperOpt
- Just a week ago! Paper on Random Search (1706.09907,Bhat et al)

Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs

Optimizing cut-and-count

ML Tools to discover $pp \rightarrow hh$

Further research

Turning cut-and-count into a science

SMBO+TPE, aka Bayesian Optimization

- Sequential Model-based Global Optimization of f(x)
- Propose a cheap surrogate function to propose x^* , $y^* = f(x^*)$

Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs

Optimizing cut-and-count

ML Tools to discover $pp \rightarrow hh$

Further research

Turning cut-and-count into a science

SMBO+TPE, aka Bayesian Optimization

- Sequential Model-based Global Optimization of f(x)
- Propose a cheap surrogate function to propose x^* , $y^* = f(x^*)$

```
\begin{split} & \textbf{SMBO}\big(f, M_0, T, S\big) \\ & 1 \quad \mathcal{H} \leftarrow \emptyset, \\ & 2 \quad \text{For } t \leftarrow 1 \text{ to } T, \\ & 3 \quad x^* \leftarrow \operatorname{argmin}_x S(x, M_{t-1}), \\ & 4 \quad \text{Evaluate } f(x^*), \quad \triangleright \text{Expensive step} \\ & 5 \quad \mathcal{H} \leftarrow \mathcal{H} \cup (x^*, f(x^*)), \\ & 6 \quad \text{Fit a new model } M_t \text{ to } \mathcal{H}. \\ & 7 \quad \textbf{return } \mathcal{H} \end{split}
```

•
$$S(x) = El_{y^*}(x) = \int_{-\infty}^{\infty} max(y^* - y, 0)p_M(y|x)dy$$

• TPE algorithm to estimate $p_M(x|y) \Longrightarrow$ HyperOpt

Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs

Optimizing cut-and-count

ML Tools to discover $pp \rightarrow hh$

Further research

- Alves, Ghosh, Sinha, arXiv:1704.07395, submitted to PRD
- Generative ML model HyperOpt to maximize an AMS function

$$\frac{S}{\sqrt{B + (\varepsilon B)^2}}$$

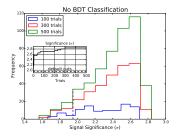
Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs

Optimizing cut-and-count


ML Tools to discover $pp \rightarrow hh$

Further research

Tuning cut thresholds

- Alves, Ghosh, Sinha, arXiv:1704.07395, submitted to PRD
- Generative ML model HyperOpt to maximize an AMS function

$$\frac{S}{\sqrt{B + (\varepsilon B)^2}}$$

 ${\sim}50\%$ improvement compared to the best previous result!

Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs

Optimizing cut-and-count

ML Tools to discover $pp \rightarrow hh$

Further research

Using BDTs

$\mathsf{Cut}+\mathsf{ML}$

• AI algorithms like BDT and DNN improve event classification

Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs

Optimizing cut-and-count

ML Tools to discover $pp \rightarrow hh$

Further research

Using BDTs

Cut+ML

- AI algorithms like BDT and DNN improve event classification
- BDTs are faster and easier to train, used by LHC people
- Many tool in the market, TMVA, Sklearn, XGBoost

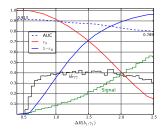
Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs

Optimizing cut-and-count


ML Tools to discover $pp \rightarrow hh$

Further research

Using BDTs

Cut+ML

- Al algorithms like BDT and DNN improve event classification
- BDTs are faster and easier to train, used by LHC people
- Many tool in the market, TMVA, Sklearn, XGBoost
- Overlooked issue: hard cuts decrease ML performance

• Why not optimizing cuts and ML tool at the same time?

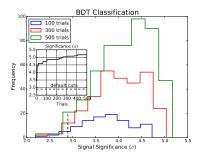
Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs

Optimizing cut-and-count


ML Tools to discover $pp \rightarrow hh$

Further research

Using BDTs

Cut+ML

- Tuning cut thresholds and ML hyperparameters
- Another huge improvement in significance!

We're getting closer to the dreamed 5σ ! But wait...systematics use to screw our lives

Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs

Optimizing cut-and-count

ML Tools to discover $pp \rightarrow hh$

Further research

Using BDTs

Taking systematic uncertainties into account

• If S/B is small, systematics become important

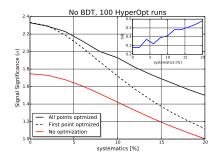
Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs

Optimizing cut-and-count


ML Tools to discover $pp \rightarrow hh$

Further research

Using BDTs

Taking systematic uncertainties into account

- If S/B is small, systematics become important
- How does HyperOpt behave when ε comes into play?

The algorithm learns how to tame the systematics!

Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs

Optimizing cut-and-count

ML Tools to discover $pp \rightarrow hh$

Further research

Using BDTs

Taking systematic uncertainties into account

• Automatized cuts + ML hyperparameters

 $\begin{array}{l} p_{T}(1) > 72 \; {\rm GeV}, \; p_{T}(2) > 20 \; {\rm GeV} \\ \Delta R_{ij} > 0.15, \; \Delta R_{ii} < 3.6 \\ M_{b\bar{b}\gamma\gamma} > 370 \; {\rm GeV}, \; p_{Tii} > 145 \; {\rm GeV}, \; M_{b_{1}\gamma_{1}} > 100 \; {\rm GeV} \\ |M_{bb} - m_{h}| < 27 \; {\rm GeV}, \; |M_{\gamma\gamma} - m_{h}| < 11 \; {\rm GeV} \\ {\rm number \ of \ trees} = 157 \\ {\rm learning \ rate} = 0.101 \\ {\rm maximum \ tree \ depth} = 14 \\ {\rm min_child_weight} = 5 \end{array}$

Prevents overfitting, tune the cuts, tame systematics at the same time with $\mathcal{O}(10^2)$ trials!

Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs

Optimizing cut-and-count

ML Tools to discover $pp \rightarrow hh$

Further research

Using BDTs+MVA

Final results

- With cross-checked realistic background simulations
- Taking systematics into account
- Using better AMS metrics
- Jointly tuning cuts+BDT+MVA

systematics $(\%)$	Cut-and-count	BDT	MVA
0	2.34[1.76]	3.88	5.05
10	1.93 [1.43]	3.57	4.64
20	1.51[1.0]	3.10	3.60

Very close to discovery @ 14TeV LHC with 3 ab^{-1} !

Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs

Optimizing cut-and-count

ML Tools to discover $pp \rightarrow hh$

Further research

Further research

- From BDT to DNN
- Measure SM and non-SM λ_{hhh} in the HL-LHC
- Measure SM and non-SM λ_{hhhh} in 100TeV colliders
- Test the technique with classic signals: DM, SUSY, other Higgs channels
- Getting the tool implemented in a general purpose package like MadAnalysis

Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs

Optimizing cut-and-count

ML Tools to discover $pp \rightarrow hh$

Further research

Further research

- From BDT to DNN
- Measure SM and non-SM λ_{hhh} in the HL-LHC
- Measure SM and non-SM λ_{hhhh} in 100TeV colliders
- Test the technique with classic signals: DM, SUSY, other Higgs channels
- Getting the tool implemented in a general purpose package like MadAnalysis

Alexandre Alves

Outline

Why double Higgs production is important?

Production and decays of Higgs bosons pairs

Optimizing cut-and-count

ML Tools to discover $pp \rightarrow hh$

Further research

THANK YOU

THANK YOU VERY MUCH!!!