Update on Energy Deposition in Betatron Cleaning Insertion

M.I. Besana, F. Cerutti and E. Skordis

team

Introduction

Shower simulations for the Betatron collimation IR (2.7 km):

- Warm magnets
 - 8 dipole modules:
 - 17 m long warm dipoles
 - magnetic field 1.8516 T
 - beam-beam separation: 250 mm and 400 mm
 - changed return coil design, to protect them from radiation (A. Milanese)
 - o 24 quadrupole modules:
 - 15.54 m long
 - very simplified design, LHC inspired, with 400 mm beam separation
- Collimators & Absorbers with same design and composition as LHC

Collimators	Length [m]	Aperture [σ]	Material	Number
Primaries	0.6	7.6	CFC	3
Secondaries	1	8.8	CFC	11
Active absorbers	1	12.6	tungsten	4

- Passive absorbers
 - TCAPA.6L in front of MBW.B6L (1.5 m long)
 - TCAPB.6L in front of MBW.A6L (0.4 m long)
 - TCAPC.6L (1 m long)

FCC dipole

FCC quadrupole

0

0 10 x[cm]

0

20

10 [____] M_____

-10

-20

-30

-40 -30 -20

TCP

FCC Power Sharing

- Expected losses assuming 12 minutes beam lifetime:
 - the total power is **11.8 MW**
- Power sharing between the different elements of the warm section for:
 - horizontal halo (already presented in April)
 - vertical halo \rightarrow new tracking simulations from Daniele:
 - https://indico.cern.ch/event/636633/contributions/2577517/attachments/1454980/2252891/
 FCC_cleaning.pdf

Power Fraction	Horizontal	Vertical
TCP and TCS jaws	5.1%	6.7%
Warm dipoles	16%	13.7%
Warm quadrupoles	4.6%	5.4%
Passive absorbers (TCAP)	8.6%	7.9%
Beam pipe	14.2%	14.2%
Tunnel wall	44.4%	44.9%
Other Elements	3.1%	3.3%
Neutrinos/E → m	4%	4%

Power on Collimator Jaws I

Collimator Jaws	Horizontal [kW]	Vertical [kW]		
Primaries				
TPC_D6L	0.02	14.7		
TPC_C6L	23.1	158.7		
TPC_B6L	209.0	260.8		
	Secondaries			
TCSG_A6L	233.6	220.9		
TCSG_B5L	8.2	10.6		
TCSG_A5L	35.7	40.8		
TCSG_D4L	27.6	33		
TCSG_B4L	7.1	8.2		
TCSG_A4L	13.1	10.8		
TCSG_A4R	15.9	13.7		
TCSG_B5R	4.9	3.9		
TCSG_D5R	9.0	6.7		
TCSG_E5R	15.7	10.9		
TCSG_6R	3.5	1.8		

Power on Collimator Jaws II

Active absorbers			
Collimator Jaws Horizontal [kW] Vertical [kW]			
TCLA_A6R	74.5	23	
TCLA_B6R	13.5	1.6	
TCLA_C6R	2.0	1.75	
TCLA_D6R	2.6	0.46	

Passive absorbers			
Collimator Jaws Horizontal [kW] Vertical [kW]			
TCAPA.6L	560.7	450.76	
TCAPB.6L	93.4	73.37	
TCAPC.6L	359.9	404.74	

Vertical TCP

Vertical TCP

20/07/17

x[cm]

20/07/17

x[cm]

Energy Deposition in the Dipoles I

Two dipole modules downstream the TCPs take more than 95% of the total on dipoles:

Energy Deposition in the Dipoles II

Energy deposition: TCP 30 cm

- The active length of the TCP has been reduced to 30 cm of CFC
 - vertical halo case https://indico.cern.ch/event/636633/contributions/2577517/attachments/1454980/2252891/FCC_cleaning.pdf
- Energy sharing between the different elements of the warm section:

Energy Sharing	TCP 60 cm	TCP 30 cm
Warm dipoles	13.7%	11.12%
Warm quadrupoles	5.4%	5.3%
TCP and TCS jaws	6.7%	4.4%
Passive absorbers (TCAP)	7.9%	6.7%
Beam pipe	14.2%	10.6%
Tunnel wall	44.9%	33.6%
Other Elements	3.3%	1.34%
Neutrinos/E → m	4%	3%

<u>11.4 TeV missing</u>, investigation ongoing: new simulations running with the new loss maps file

Conclusions & Outlooks

Conclusions:

- Simulations with vertical halo:
 - power fraction on dipoles reduced from 16% to 13.7% with respect to horizonthal halo case
 - maximum total power on a dipole module = 0.96 MW, maximum power per meter = 250 kW/m, but bulk below 100 kW/m
 - 6.7% of power on the collimators jaws
 - few collimators with total power above 100 kW: horizontal and skew TCP and first TCS
 - higher peak power density on the vertical TCP (x-y-z resolution: 5 μm 5 μm 1 cm): 4 kWcm⁻³
 - maximum peak power density on the first TCS on the support (x-y-z resolution: 0.24 cm 1 cm – 10 cm): 800 kWcm⁻³

Next steps:

- Simulations ongoing:
 - with shorter primaries & new loss maps
 - with 60 cm long primaries & thicker secondaries (4.5 cm thick jaw instead of 2.5 cm)

Power on Collimators and Absorbers

Collimator Jaws	TCP 6o cm	TCP 30 cm	
Primaries			
TPC_D6L	14.7	6.0	
TPC_C6L	158.7	76.9	
TPC_B6L	260.8	119.5	
	Secondaries		
TCSG_A6L	220.9	173.9	
TCSG_B5L	10.6	10.7	
TCSG_A5L	40.8	40.1	
TCSG_D4L	33	33.7	
TCSG_B4L	8.2	8.7	
TCSG_A4L	10.8	11.3	
TCSG_A4R	13.7	14.0	
TCSG_B5R	3.9	4.4	
TCSG_D5R	6.7	7.9	
TCSG_E5R	10.9	12.3	
TCSG_6R	1.8	1.9	

Active absorbers			
Collimator Jaws	TCP 6o cm [kW]	TCP 30 cm [kW]	
TCLA_A6R	23	24.4	
TCLA_B6R	1.6	2.3	
TCLA_C6R	1.75	2.3	
TCLA_D6R	0.46	1.2	

Passive absorbers			
Collimator Jaws	Collimator Jaws TCP 60 cm TCP 30 cr [kW] [kW]		
TCAPA.6L	450.8	384.5	
TCAPB.6L	73.4	60.6	
TCAPC.6L	404.7	349.6	

FCC vs LHC

Table 2: Sharing of beam energy deposition in the collimation betatron cleaning insertion for FCC (50 TeV) and LHC (6.5 TeV).

Element	FCC	LHC
Warm dipoles	16%	8.5%
Warm quadrupoles	4.6%	9.5%
TCP and TCS jaws	5.1%	10.5%
Passive absorbers	8.6%	13.5%
Tunnel and other elements	47.5%	42.4%
Beam pipe	14.2%	8.6%
Missing	4%	6.5%