

BSc Thesis presentation

Search for di-Higgs production in the yyWW* decay channel in the boosted topology

JOSHUA BEIRER Supervised by S. Lai and J. Veatch

Theory and Motivation

- Higgs boson discovered in 2012
- Last missing fundamental particle predicted by the SM

→ Many studies performed since then but important qestions remain open:

- Higgs self-coupling?
- New heavy resonanes?

No experimenetal observation yet, but could answer some questions soon, as LHC provides more and more data

Non-resonant production

• Self coupling is predicted by the Higgs mechanism in the SM:

 $V\left(\phi\phi^{\dagger}\right) = \mu^{2}\left(\phi\phi^{\dagger}\right) + \lambda\left(\phi\phi^{\dagger}\right)^{2}$ $= \dots - \lambda vh^{3} - \frac{1}{4}\lambda h^{4}$

- \rightarrow Trilinear and quartic couplings
- → Possibilites for double Higgs production arise
 - SM predicts small cross section $(\sigma_{hh}(13 \text{ TeV}) = 33.45 \text{ fb})$
 - Destructive interference with box-diagram

- Many observations cannot be explained by the SM, e.g.:
- Dark Matter
- Gravity
- Baryon asymmetry
- Large corrections on Higgs mass

Standard model predicts trilinear coupling to be:

$$\lambda_{hhh}^{SM} = \frac{3m_h^2}{v^2}$$

Many models assume a different coupling constant \rightarrow Alters the way both diagrams interfere

 \rightarrow Changes di-Higgs production cross section

Measurement of di-Higgs cross section allows for direct inference of trilinear coupling (assuming no further contribuitions)

Searches for new physics plays an important role

Resonant production

- > Many models predict heavier versions of the Higgs boson
- > Models introducing two Higgs doublets known as 2HDM models

Example: Minimal Super Symmetric Model (MSSM)

• Introduces only the minimal amount of particles needed for a super symmetrical theory

Note:

- one Higgs boson cannot give masses to up- and down-type quarks simultaneously
- Two Higgs doublets necessary to cancel gauge anomalies

→ Two Higgs doublets added, leading to five physical Higgs bosons:

- known SM Higgs h
- heavier CP-even neutral Higgs H
- CP odd pseudoscalar A
- two charged H[±]

- MSSM could provide additional sources of CP violation
- Provides promising candidate for Dark matter
- Solves hierarchy problem

Focus on heavy CP-even H decaying into two light h

14.07.2017

Why the hadronic $\gamma\gamma WW^*$ decay channel?

Decay mode	Branching ratio
$h ightarrow b ar{b}$	57.8%
$h \to WW^*$	21.6%
h ightarrow gg	8.6%
$h \rightarrow \tau^+ \tau^-$	6.4%
$h \to c \bar c$	2.9%
$h \to Z Z^*$	2.7%
$h\to\gamma\gamma$	0.2%

$\mathrm{Br}(\mathrm{W} \to \mathrm{e}\bar{\nu}_{\mathrm{e}}) = 0.1046$
$Br(W \to \mu \bar{\nu}_{\mu}) = 0.1050$
$Br(W \to \tau \bar{\nu}_{\tau}) = 0.1075$
$Br(W \rightarrow q\bar{q}) = 0.6832$

• γγ side

✓ Clean signal
 ✓ Well-known background
 X Small branching ratio

WW* side

- ✓ High branching ratio
- ✓ Full reconstruction possible
- X Worse identification compared to semileptonic channel

Overall branching ratio of hh $\rightarrow \gamma\gamma W_{had} W^*_{had}$ is 0.044%

Boosted topology

Consider resonances above $m_H = 750 \text{ GeV}$

- ightarrow Higgs decay products get a high Lorentz boost and are closer together
- \rightarrow Nominal small R-jets (Anti-k_t(R=0.4)) cannot be used anymore to resolve each parton separately

Idea: use Anti-k_t(R=1.0) jets and get information about jet structure using substructure variables, e.g. N-subjettiness and Energy Correlation Functions

Analysis strategy

- Use complete 2015/2016 dataset recorded by ATLAS (36.1 fb⁻¹)
- Signal simulation:
 - > Non-resonant hh $\rightarrow \gamma\gamma WW^*$ sample
 - > Resonant mass points h h $\rightarrow \gamma\gamma WW^*$ ranging from 260 GeV to 3 TeV
- Background simulation:
 - Huge list of SM processes that contribute to background
 - ightarrow Continuous background hard to simulate
 - \rightarrow Use data driven background:
 - \succ Cut out signal region $m_{\gamma\gamma} \in \{125.09 \pm 3.4 \text{ GeV}\}$
 - Perform exponential fit based on sideband region

In addition use MC generated $h \rightarrow \gamma \gamma$ samples

Channel	Number of events	$\sigma \cdot BR(h \to \gamma \gamma)$ [fb]
ggF	1930000	110.1
VBF	984000	8.6
WH	246200	3.1
ZH	247800	2.0
ttH	49800	1.2

Event selection

Jet selection

• Require at least one Anti- k_T (R=1.0) jet with $|\eta| < 2.0$ and $p_T > 200$ GeV

Photon selection:

- Require at least two photons that fulfill 'tight' identification criterion and p_T>25 GeV
- Relative p_T cut: $p_{T, \gamma_1}/m_{\gamma\gamma} > 0.35$ and $p_{T, \gamma_2}/m_{\gamma\gamma} > 0.25$ for $p_{T, \gamma_1} > p_{T, \gamma_2}$
- Isolation criterion "FixedCutLoose"

Vetoes

Vetoes on b-jets and leptons

 \rightarrow The optimization was redone using 'loose' ID criterion and removing the 'isolation criterion'

Optimization

Goal: maximize significance

$$\Sigma = \sqrt{2 \times \left((s+b) \ln \left(1 + \frac{s}{b} \right) - s \right)}$$

whereby s and b are the number of expected signal and background

for the 750 GeV sample by applying cuts on kinematic variables and substructure variables. We considered:

Substructure variables:

- N-Subjettiness τ_{21} , τ_{31} , τ_{32} , τ_{41} , τ_{42} , τ_{43}
- Energy correlation functions related variables C₁-C₄, D₁-D₄

Kinematic variables:

• $P_{T_{,YY}}, P_{T_{,YY}}/P_{T_{,J}}, \Delta \phi_{J_{,YY}}, \Delta \eta_{J_{,YY}}, \Delta R_{J_{,YY}}, \Delta R_{YY}, M_{J}$

Strategy: Cut on maximum significances of variables and then re-optimize on each variable by keeping other cuts fixed.

GEORG-AUGUST-UNIVERSITÄT

GÖTTINGEN

Loose photon criteria

→ Re-optimization yields best significance for $P_{T, YY} > 300 \text{ GeV}$, $C_1 > 0.14$, $\Delta \eta_{J, YY} < 1.4$ and $m_J < 136 \text{ GeV}$ $Z_0 = 0.251974 + 0.00472369$

Limits

As no non-resonant or resonant di-Higgs production was observed, upper limits on cross section times BR were set

Small excess for the observed limits within the 2σ band

${\rm Mass}~[{\rm GeV}]$	Non-res.	400	500	750	1000	1500	2000	2500	3000
Median [pb] Observed	$27.16 \\ 48.37$	$3464.32 \\ 6465.87$	$251.22 \\ 450.25$	$3.27 \\ 5.83$	$2.19 \\ 3.90$	$2.07 \\ 3.69$	$3.09 \\ 5.50$	5.58 9.93	$\begin{array}{c} 9.44\\ 16.80\end{array}$
+2 σ [pb] +1 σ [pb] -1 σ [pb] -2 σ [pb]	59.24 40.11 19.57 14.58	9726.23 5611.46 2496.24 1859.39	566.71 375.23 181.02 134.84	7.14 4.83 2.36 1.76	4.78 3.24 1.58 1.18	4.51 3.06 1.49 1.11	6.73 4.56 2.23 1.66	$12.16 \\ 8.23 \\ 4.02 \\ 2.99$	$20.58 \\ 13.94 \\ 6.80 \\ 5.07$

Summary and Outlook

- > No di-Higgs production has been observed
- Limits on cross section times branching ratio set
- More data from the LHC in the coming years hopefully increases sensitivity for non-resonant production
- Combine limits with other channels such as with the semi leptonic topology

Thank you for your attention!

Backup slides

Final cutflow

Cut	$m_{\gamma\gamma}$ sidebands	MC-bkg	non-reso.	$m_H=750{\rm GeV}$
N _{DxAOD}	111112680	3485.71 ± 4.69	0.384 ± 0.002	12.44 ± 0.05
DQ	97814823	3346.16 ± 4.59	0.367 ± 0.002	12.11 ± 0.05
2 loose photons	29866531	2772.32 ± 4.17	0.296 ± 0.001	9.83 ± 0.04
trigger match	29794061	2766.72 ± 4.17	0.295 ± 0.001	9.78 ± 0.04
tight ID	4422423	2403.58 ± 3.88	0.295 ± 0.001	9.78 ± 0.04
isolation	1635695	2156.12 ± 3.66	0.262 ± 0.001	8.98 ± 0.04
rel. $p_{T,\gamma}$ cuts	1427304	1987.01 ± 3.51	0.239 ± 0.001	8.59 ± 0.04
fit range	490962	1986.29 ± 3.51	0.238 ± 0.001	8.58 ± 0.04
$m_{\gamma\gamma} = 125.09$	445828	1800.47 ± 3.34	0.204 ± 0.001	7.61 ± 0.04
> 1 large-R jet	2331	37.11 ± 0.50	0.0336 ± 0.001	4.31 ± 0.03
b-veto	2176	33.49 ± 0.48	0.0327 ± 0.0003	4.21 ± 0.03
lepton veto	2158	32.95 ± 0.48	0.0274 ± 0.0003	3.58 ± 0.03
$p_{T,\gamma\gamma}>275{\rm GeV}$	283	14.96 ± 3.18	0.0123 ± 0.0002	2.86 ± 0.02
$\tau_{42} < 0.475$	42	2.83 ± 0.14	0.00706 ± 0.0001	1.71 ± 0.02
$C_1>0.08$	21	1.61 ± 0.10	0.0063 ± 0.0001	1.57 ± 0.02

$n_{\gamma\gamma}$ sidebands	MC-bkg	non-reso.	$m_H = 750 \mathrm{GeV}$	
111112680	3485.71 ± 4.69	0.384 ± 0.002	12.44 ± 0.05	
97814823	3346.16 ± 4.59	0.367 ± 0.002	12.11 ± 0.05	
29866531	2772.32 ± 4.17	0.296 ± 0.001	9.83 ± 0.04	
29794061	2766.72 ± 4.17	0.295 ± 0.001	9.78 ± 0.04	
23805404	2511.85 ± 3.97	0.266 ± 0.001	9.25 ± 0.04	
8288643	2507.17 ± 3.97	0.264 ± 0.001	9.20 ± 0.04	
7568261	2227.92 ± 3.73	0.223 ± 0.001	8.11 ± 0.04	
49501	44.50 ± 0.51	$0.036\ \pm 3.89\cdot 10^{-4}$	4.59 ± 0.03	
46463	39.90 ± 0.53	$0.035\ \pm 3.85\ \cdot\ 10^{-4}$	4.48 ± 0.03	
46262	39.20 ± 0.52	$0.030\pm 3.61\cdot 10^{-4}$	3.81 ± 0.03	
3792	13.72 ± 0.31	$0.010\pm 1.27\cdot 10^{-4}$	2.57 ± 0.02	
740	2.20 ± 0.13	$0.005\pm 9.05\cdot 10^{-5}$	1.51 ± 0.02	
423	1.44 ± 0.01	$0.004 \pm 8.67 \cdot 10^{-5}$	1.39 ± 0.02	
183	0.89 ± 0.08	$0.003 \pm 8.05 \cdot 10^{-5}$	1.17 ± 0.01	
	$n_{\gamma\gamma}$ sidebands 111112680 97814823 29866531 29794061 23805404 8288643 7568261 49501 46463 46262 3792 740 423 183	$h_{\gamma\gamma}$ sidebandsMC-bkg1111126803485.71 ± 4.69978148233346.16 ± 4.59298665312772.32 ± 4.17297940612766.72 ± 4.17238054042511.85 ± 3.9782886432507.17 ± 3.9775682612227.92 ± 3.734950144.50 ± 0.514646339.90 ± 0.534626239.20 ± 0.52379213.72 ± 0.317402.20 ± 0.134231.44 ± 0.011830.89 ± 0.08	$h_{\gamma\gamma}$ sidebandsMC-bkgnon-reso.1111126803485.71 ± 4.69 0.384 ± 0.002 978148233346.16 ± 4.59 0.367 ± 0.002 298665312772.32 ± 4.17 0.296 ± 0.001 297940612766.72 ± 4.17 0.295 ± 0.001 238054042511.85 ± 3.97 0.266 ± 0.001 82886432507.17 ± 3.97 0.264 ± 0.001 75682612227.92 ± 3.73 0.223 ± 0.001 4950144.50 ± 0.51 $0.036 \pm 3.89 \cdot 10^{-4}$ 4646339.90 ± 0.53 $0.035 \pm 3.85 \cdot 10^{-4}$ 4626239.20 ± 0.52 $0.030 \pm 3.61 \cdot 10^{-4}$ 379213.72 ± 0.31 $0.010 \pm 1.27 \cdot 10^{-4}$ 7402.20 ± 0.13 $0.003 \pm 8.05 \cdot 10^{-5}$ 183 0.89 ± 0.08 $0.003 \pm 8.05 \cdot 10^{-5}$	

Loose

Tight

II. Physikalisches Institut

Substructure variables

$$\begin{split} &ECF_0(\beta) = 1\\ &ECF_1(\beta) = \sum_{i \in J} p_{T,i}\\ &ECF_2(\beta) = \sum_{i < j \in J} p_{T,i} p_{T,j} \Delta R_{ij}^{\beta}\\ &ECF_3(\beta) = \sum_{i < j < k \in J} p_{T,i} p_{T,j} p_{T,k} \left(\Delta R_{ij} \Delta R_{jk} \Delta R_{ki} \right)^{\beta} \end{split}$$

$$C_N(\beta) = \frac{ECF_{N+1} \times ECF_{N-1}}{ECF_N^2}$$
$$D_N(\beta) = \frac{ECF_{N+1} \times ECF_{N-1} \times ECF_1^N}{ECF_N^3}$$

— lower band

- upper band

150

120

130

140

T

160

 $m_{\gamma\gamma}$ [GeV]

