Dark matter candidates

Kallia Petraki
Sorbonne Université, LPTHE, Paris and Nikhef, Amsterdam

Dark Matter Conference, UCLA
February 2018
Dark matter properties

- Stable or very long-lived
- Dark
- Produced at the observed density in the early universe
- Compatible with existing experimental constraints (colliders, direct detection, indirect detection)
- Consistent with observed galactic structure
 - Not hot at the onset of gravitational collapse
 - Cold or warm?
 - Collisionless or self-interacting?

DM is not a known particle!
We know that we don't know.

But we also know that we would like to know!

Socrates
by Leonidas Drosis, Athens - Academy of Athens.
Image from Wikipedia.
Dark matter candidates
Classification schemes
Dark matter candidates

Classification schemes

Interaction with the SM

Portal operators

\[\epsilon \, F_\gamma^{\mu \nu} F_{\rho \nu}^{\mu} \]
\[(\mu \phi + \lambda \phi^2) |H|^2 \]
\[y L H N \]

SM interactions

WIMPs

Heavy mediators

EFTs

[Tim Tait’s talk]
Dark matter candidates

Classification schemes

<table>
<thead>
<tr>
<th>Interaction with the SM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portal operators</td>
</tr>
<tr>
<td>$\epsilon F_{\gamma}^{\mu \nu} F_{\nu}^{\mu \rho}$</td>
</tr>
<tr>
<td>$(\mu \phi + \lambda \phi^2)</td>
</tr>
<tr>
<td>$y L H N$</td>
</tr>
<tr>
<td>SM interactions</td>
</tr>
<tr>
<td>WIMPs</td>
</tr>
<tr>
<td>Heavy mediators</td>
</tr>
<tr>
<td>EFTs</td>
</tr>
<tr>
<td>[Tim Tait's talk]</td>
</tr>
</tbody>
</table>

Interaction type

<table>
<thead>
<tr>
<th>Long-range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-interacting DM</td>
</tr>
<tr>
<td>TeV-scale WIMPs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contact type</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFTs</td>
</tr>
<tr>
<td>EW-scale WIMPs</td>
</tr>
</tbody>
</table>
Dark matter candidates

Classification schemes

Interaction with the SM

<table>
<thead>
<tr>
<th>Portal operators</th>
<th>SM interactions</th>
<th>Heavy mediators</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\epsilon F_{y}^{\mu\nu} F_{D,\mu\nu}$</td>
<td>WIMPs</td>
<td>EFTs [Tim Tait's talk]</td>
</tr>
<tr>
<td>$(\mu \phi + \lambda \phi^2)</td>
<td>H</td>
<td>^2$</td>
</tr>
<tr>
<td>$y \bar{L} H N$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interaction type

<table>
<thead>
<tr>
<th>Long-range</th>
<th>Contact type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-interacting DM</td>
<td>EFTs</td>
</tr>
<tr>
<td>TeV-scale WIMPs</td>
<td>EW-scale WIMPs</td>
</tr>
</tbody>
</table>

Production mechanism

<table>
<thead>
<tr>
<th>Scalar condensates</th>
<th>Collapse of density perturbations</th>
<th>Freeze-in</th>
<th>Asymmetric freeze-out</th>
<th>Symmetric freeze-out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q-balls</td>
<td>Primordial black holes [Anne Green's talk]</td>
<td>Sterile neutrinos [K. Abazajian's talk]</td>
<td>Hidden sector models, e.g. dark U(1), dark QCD</td>
<td>WIMPs Heavy meds Light meds</td>
</tr>
</tbody>
</table>
Dark matter candidates

Classification schemes

High-energy motivation
- Supersymmetry: WIMPs, Q-balls
- Neutrino masses: Sterile neutrinos
- Strong-CP problem: Axions

Observational motivation
- Neutrino masses: Sterile neutrinos
- DM density / BAU: Asymmetric DM
- Galactic structure: Self-interacting DM, warm DM
- Astrophysical anomalies: WIMP DM, sterile neutrinos, hidden sector models
In the following

I will discuss in a bit more detail

- WIMPs
- Self-interacting DM
- Asymmetric DM

See dedicated talks on

- Primordial black holes [Anne Green]
- Axions [Peter Graham]
- Sterile neutrinos [Kevork Abazajian]

with emphasis on long-range effects
WIMP dark matter
WIMP dark matter
Motivation

- New particles coupled to the Weak interactions of the SM are expected in theories that address the EW hierarchy problem. Caveat: Not all WIMP scenarios address the hierarchy problem.

- Weak-scale cross-sections can yield the observed DM density via thermal freeze-out.

- We know that the Weak interactions exist!

\[
\Omega \sim 0.26 \times \left(\frac{1 \text{pb} \cdot c}{\sigma_{\text{ann}} \nu_{\text{rel}}} \right)
\]
WIMP dark matter
Popular candidates

- **Neutralino** in SUSY models
 - Constrained MSSM rather constrained

- **Co-annihilation scenarios**, for near mass-degenerate LSP-NLSP
 - Degenerate spectrum → soft jets → evade LHC constraints
 - Large stop-Higgs coupling reproduces measured Higgs mass and brings the lightest stop close in mass with the LSP.
 - DM density determined by “effective” Boltzmann equation for

\[
\sigma_{\text{ann}}^{\text{eff}} = \left[n_{\text{LSP}}^2 \sigma_{\text{ann}}^{\text{LSP}} + n_{\text{NLSP}}^2 \sigma_{\text{ann}}^{\text{NLSP}} + n_{\text{LSP}} n_{\text{NLSP}} \sigma_{\text{ann}}^{\text{LSP-NLSP}} \right] / n_{\text{tot}}^2
\]

- Extended models, e.g. NMSSM

Long-range effects
- Sommerfeld effect due to gluon exchange
- Formation and decay of unstable bound states
- Higgs enhancement
Bound-state formation and relic density

Dark U(1) model

Direct annihilation

\[X + \bar{X} \rightarrow 2\gamma_D \]

\[\sigma_{\text{ann}} \nu_{\text{rel}} = \frac{\pi \alpha_D^2}{m^2_x} \times S_{\text{ann}}(\alpha_D/\nu_{\text{rel}}) \]

Radiative bound-state formation

\[X + \bar{X} \rightarrow \mathcal{B}(X \bar{X}) + \gamma_D \]

\[\sigma_{\text{BSF}} \nu_{\text{rel}} = \frac{\pi \alpha_D^2}{m^2_x} \times S_{\text{BSF}}(\alpha_D/\nu_{\text{rel}}) \]
Bound-state formation and relic density

Dark U(1) model

Direct Annihilation \(X\bar{X} \rightarrow \gamma_D \gamma_D \)
Bound-state formation \(X\bar{X} \rightarrow B(X\bar{X}) + \gamma_D \)
and decay \(B(X\bar{X}) \rightarrow 2\gamma_D \) or \(3\gamma_D \)

\[\Omega_{SE\,ann} / \Omega_{DM} \approx 2 \]

Effect larger than the experimental uncertainty of 1% at 15 TeV

\[\Omega_{SE\,ann} / \Omega_{DM} \]

Effect larger than experimental sensitivity

von Harling, KP: 1407.7874
Baldes, KP: 1703.00478
WIMP dark matter
Gluon-mediated bound states in co-annihilation scenarios

MSSM-inspired toy models
[Liew and Luo, 1611.08133; see also El Hedri+, 1703.00452]

DM co-annihilating with scalar color-triplet
DM co-annihilating with fermionic color-octet

SE annihilation + bound states
SE annihilation
Perturbative annihilation
WIMP dark matter
Gluon-mediated bound states in co-annihilation scenarios

MSSM with near-degenerate NLSP-LSP
Keung, Low, Zhang, 1703.02977; see also Ellis, Luo, Olive, 1503.07142

Bino-Stop coannihilation

Bino-Sbottom coannihilation
WIMP dark matter
Higgs enhancement in co-annihilation scenarios

[Harz and KP, arXiv:1711.03552]

\[V(r) = -\frac{\alpha_g}{r} - \frac{\alpha_h}{r} e^{-m_h r} \]

Gluon potential influences how long-range the Higgs exchange manifests!

Higgs exchange, typically thought to be too contact-type

Gluon and Higgs exchange

DM co-annihilating with scalar color-triplet (e.g. stops)

Dashed bands: without Higgs enhancement
Solid bands: with Higgs enhancement

Range of \(\alpha_h \) occurs in MSSM

Effect on \(\Omega \) large!

[No bound-state effects included, yet.]
WIMP dark matter
Implications of long-range effects in co-annihilation scenarios

- Alter the interpretation of experimental results
- Increase mass gap → improve detection prospects with multi-/mono-jet searches.
- DM can be heavier than anticipated → probe multi-TeV regime with indirect detection

Some caution:
Computations are new, need to be checked and refined results presented may change!
WIMP dark matter
Popular candidates

- **Minimal DM** ([Cirelli et al, 2005...])
 Neutral component of a pure $SU(2)_L$ multiplet.
 Multiplicity & spin chosen to ensure stability.
 Mass determined by observed DM density from thermal freeze-out

 5-plet, $Y=0$
 Spin $\frac{1}{2}$
 $m_{DM} \sim 10 \text{ TeV}$

 Too heavy for LHC.
 Too weakly coupled (box diagram) and too heavy for direct detection.
 Best probe: Indirect detection

Constraints from diffuse Fermi data
Burkert profile, including background
Self-interacting dark matter
Self-interacting dark matter

Plausible solution to the apparent discrepancies between predictions of collisionless cold DM and observations

[Spergel, Steinhardt (2000)]

- Cross-section needed to affect galactic structure
 \[\frac{\sigma_{\text{self-scatt}}}{m_{\text{DM}}} \sim \text{barn/GeV} \sim \text{cm}^2/\text{g} \]
 at dwarf-galaxy scales, \(v_{\text{DM}} \sim 20 \text{ km/s} \).

- Upper limit from Clusters is of the same order, at \(v_{\text{DM}} \sim 1000 \text{ km/s} \).

- No tension between the two, if \(\sigma_{\text{self-scatt}} \) decreases with increasing \(v_{\text{DM}} \)
 \[\Rightarrow \text{Light mediators, long-range interactions!} \]
 e.g. massless mediator: Rutherford scattering \(\sigma_{\text{self-scatt}} \sim 1/v^4 \).
A dark U(1) sector

\[\mathcal{L} = \bar{X}(i\not \! \partial) - M_{DM} X - \frac{1}{4} F_{D\mu\nu} F_{D}^{\mu\nu} - \frac{1}{2} m_{V_{D}}^{2} V_{D\mu} V_{D}^{\mu} - \frac{\varepsilon}{2c_{w}} F_{D\mu\nu} F_{Y}^{\mu\nu} \]

Dark matter: Fermions \(X, \bar{X} \), with mass \(M_{DM} \)

Coupled, dark fine structure constant \(\alpha_{D} \)

Dark Photons \(V_{D} \), with mass \(m_{V_{D}} \)

Coupling between dark photons & ordinary photons “kinetic mixing” \(\varepsilon \)

\[\alpha_{D} = \alpha_{D}(M_{DM}) \] fixed from relic density

Direct Annihilation \(X\bar{X} \rightarrow V_{D} V_{D} \)

Bound-state formation \(X\bar{X} \rightarrow \mathcal{B}(X\bar{X}) + V_{D} \)

and decay \(\mathcal{B}(X\bar{X}) \rightarrow 2V_{D} \) or \(3V_{D} \)

Dark photon decay \(V_{D} \rightarrow f_{SM}^{+} f_{SM}^{-} \)
A dark U(1) sector
Constraints

Dark photon masses
sub-eV $< m_{V_D} < $ GeV,
excluded!
Self-interacting dark matter

- Strong constraints on minimal SIDM models from the combination of CMB & indirect detection, direct detection and cosmological considerations

 [Constraints on light scalar mediators: Kahlhoefer+ 1704.02149]

- Viable SIDM scenarios
 - Entirely massless mediators
 - More complex sectors with symmetric DM
 - Asymmetric dark matter

 [e.g. pure non-Abelian gauge theory Boddy, Feng, Kaplinghat, Tait (2014)]
Asymmetric dark matter
Asymmetric dark matter

Motivation

• Similarity of dark and ordinary matter densities suggests a common origin.
 Proposal: DM density due to a excess of particles over antiparticles related dynamically to the BAU in the early universe and conserved separately today.

• Very suitable host of self-interacting dark matter:
 No upper limit on the annihilation cross-section → allows for large couplings to light mediators.
 Dark and ordinary asymmetries need not be related → ADM may have a wide range of masses.

Reviews:
KP, Volkas, 1305.4939
Zurek, 1308.0338
Asymmetric and self-interacting dark matter
DM coupled to light mediators
The effect of bound states

- **Symmetric DM → unstable bound states**
 Formation + decay = extra annihilation channel
 - Relic abundance
 - Indirect detection

- **Asymmetric DM → stable bound states**
 - Kinetic decoupling of DM from radiation, in the early universe
 - DM self-scattering in halos (screening)
 - Indirect detection signals (radiative level transitions)
 - Direct detection signals (screening, inelastic scattering)
Asymmetric DM coupled to light mediators

- **Dark gauge U(1) sector**

 Gauge invariance implies at least two asymmetric dark species, oppositely charged: dark protons & dark electrons → dark atoms

 Same conclusion if dark U(1) mildly broken and dark photon light enough to yield SIDM.

- **Non-Abelian gauge theory + fermions**

 Dark nucleons & nuclei

- **Scalar mediator**

 Attractive interaction between particles; multi-particle bound states may form.

[KP, Pearce, Kusenko 2014]

[Detmold, McCullough, Pochinsky 2014]

[Wise, Zhang 2014]
Asymmetric DM coupled to light mediators

- **Dark gauge U(1) sector**

 Gauge invariance implies at least two asymmetric dark species, oppositely charged: dark protons & dark electrons → dark atoms

 Same conclusion if dark U(1) mildly broken and dark photon light enough to yield SIDM.

- **Non-Abelian gauge theory + fermions**

 Dark nucleons & nuclei

- **Scalar mediator**

 Attractive interaction between particles; multi-particle bound states may form.

- Multicomponent DM is a generic feature of asymmetric DM coupled to light mediators

Detmold, McCullough, Pochinsky 2014]

[KP, Pearce, Kusenko 2014]

Detmold, McCullough, Pochinsky 2014]

[Wise, Zhang 2014]
Self-interacting asymmetric DM
Indirect detection: U(1) sector + kinetic mixing

- **Annihilations of residual symmetric component**, Rate suppressed by asymmetry, but enhanced by Sommerfeld effect due to light dark photon.

\[p_D + \bar{p}_D \rightarrow \gamma_D + \gamma_D \]
\[\gamma_D \rightarrow f_{SM}^+ f_{SM}^- \]

Rate significant for antiparticle-to-particle ratio as low as $10^{-3} - 10^{-4}$. Caveat: Formation of dark atoms may deplete available p_D and suppress annihilation signals.

[Baldes, KP 1703.00478, Baldes, Cirelli, Panci, KP, Sala, Taoso 1712.07489]

- **Radiative level transitions**, e.g. dark atom formation from residual ionized component

\[p_D + e_D \rightarrow H_D + \gamma_D \]
\[\gamma_D \rightarrow f_{SM}^+ f_{SM}^- \]

[Pearce, KP, Petraki, 1502.01755

For other models:
arXiv:1303.7294;
arXiv:1404.3729;
arXiv:1406.2276]
(A)symmetric DM coupled to a dark photon: annihilation constraints

\[
\rho_\infty \equiv \frac{n_{\chi}}{n_X} \bigg|_{t \to \infty}
\]
Conclusion

Dynamics of dark matter can be quite complex, and there are many more frontiers to explore!

- Multicomponent self-interacting DM – effect on galactic structure
- Indirect detection signals from radiative level transitions of symmetric and asymmetric DM
- Signatures in direct detection experiments