

PANDAX: Status and Prospects

Jianglai Liu Shanghai Jiao Tong University On behalf of PandaX Collaboration

China Jin-Ping Underground Lab (CJPL-I)

PandaX Experiments

PandaX-I: 120 kg **DM** experiment 2009-2014

PandaX-II: 580 kg **DM** experiment 2014-2018

PandaX-xT: multi-ton DM experiment **Future**

PandaX-III: 200 kg to 1 ton HP gas ¹³⁶Xe **OvDBD** experiment **Future**

PANDAX = Particle and Astrophysical Xenon Experiments

PandaX collaboration

Started in 2009, ~50 people

- Shanghai Jiao Tong University
- Peking University
- Shandong University
- Shanghai Institute of Applied Physics
- Yalong Hydropower Company
- University of Maryland
- University of Science & Technology of China
- China Institute of Atomic Energy
- Sun Yat-Sen University
- Lawrence Berkeley National Lab
- Alternative Energies & Atomic Energy Commission
- University of Zaragoza
- Suranaree University of Technology

PandaX apparatus in CJPL-I

PandaX-II Detector

- 60 cm x 60 cm cylindrical TPC
- 580-kg of LXe in sensitive region,
 1.2-ton LXe in total
- 55 top + 55 bottom R11410 3" target PMTs
- 24 top + 24 bottom R8520 1" VETO PMTs

PandaX-II data taking history

Mar. 9 – June 30, low background with 10fold reduction of Kr (Run9, 79.6 days) Nov. 2016 – Mar. 2017, 2nd distillation campaign and recommissioning July 2017-Now, few months ²²⁰Rn/AmBe runs, followed by blinded DM search, 1.5 x stat of Run 10

2015

2016

2017

2018

Nov. 22 – Dec. 14, Physics commission (Run8, 19.1 days, stopped due to high Krypton background)

Jul – Oct, ER calibration & tritium removal

Apr.22 – July15, dark matter data taking (Run10, 77.1 days)

- Run9 = 79.6 days, exposure: 26.2 ton-day
- Run10 =77.1 days, exposure: 27.9 ton-day
- Largest reported DM exposure to date

Run8+9 SI and SD results

33,000 kg-day exposure

PRL 117, 121303 (2016)

PRL 118, 071301 (2017)

Minimum elastic SI exclusion: 2.5x10⁻⁴⁶ cm² @ 40 GeV/c²

Minimum χ -n SD cross section limit: 4.1x10⁻⁴¹ cm² at 40 GeV/c²

Run9 axion limits PRL 119, 181806 (2017)

$$A + Xe \rightarrow Xe^+ + e^-$$

 Among the leading axion search on axion-electron coupling using DD experiments

NR and ER calibration data

- ER events: tritium decay with >700 μs electron lifetime
- Fraction leaked below the NR median: 0.53(8)%

2nd distillation campaign

- After ER calibration, realized that the getter could not remove tritium background effectively
- Suspected tritium attached to wall, emanation rate balance with removal rate
- ⇒ 2nd distillation campaign (for Kr and tritium)
- Nov. Mar 2017:
 recuperate → distillation →
 refill, flush (closed) detector
 with warm xenon

First beneficial occupancy of CJPL-II!

Jianglai Liu UCLA DM 2018 11

ER background budget table

	Run9	Run10
¹²⁷ Xe	0.42	0.021
Tritium	0	0.27
⁸⁵ Kr	1.19	0.20
²²² Rn	0.13	0.12
²²⁰ Rn	0.01	0.02
Detector ER	0.20	0.20
Solar neutrino	0.01	0.01
¹³⁶ Xe	0.0022	0.0022
Total	1.96	0.79

Original ¹²⁷Xe gone, additional introduced by a bottle of surface xenon during distillation

Based on best fit to data

Rest are consistent between Run 9 and Run 10

(later)

Unit: mDRU = 10^{-3} /keV/day/kg 0.8 mDRU ~ 2 events a day!

UCLA DM 2018 12

Jianglai Liu

Energy spectrum in Run 10

Data and expected background in good agreement

Jianglai Liu UCLA DM 2018 13

Distribution of events

	ER	Accidental	Neutron	Total Fitted	Total Observed
Run 9	376.1	13.5	0.85	390 ± 50	389
Below NR median	2.0	0.9	0.35	3.2 ± 0.9	1
Run 10	172.2	3.9	0.83	177 ± 33	177
Below NR median	0.9	0.6	0.33	1.8 ± 0.5	0

Appears to have a downward fluctuation of background (p value 7% for Run 9+10)

WIMP-nucleon SI results

- Improved from PandaX-II 2016 limit about 2.5 time for >30GeV/c²
- Lowest exclusion at 8.6×10^{-47} cm² at 40GeV/c²
- Most stringent limit for WIMP-nucleon cross section for mass
 >100GeV/c² to date

WIMP-nucleon SD results (54 ton-day)

Minimum χ -n SD cross section limit: 1.6x10⁻⁴¹ cm² at 40 GeV/c²

Minimum χ -p SD cross section limit: 4.4x10⁻⁴⁰ cm² at 40 GeV/c²

- More general EFT analysis completed
- Soon to be appeared on arXiv

Self-interacting DM search

PRL 119, 111102

Astrophysical observations: SIDM could solve long standing "small-scale puzzle"

- DD constraint: upper limit of interaction strength of dark mediator with SM: σ~ ε²/m₀⁴
- BBN constraint: lower limit
 of decay strength of dark
 mediator into SM: τ~ (ε²m₀)-1

Self-interaction DM search (54-ton day)

arXiv:1802.06912

- Minimum mediator mass can be obtained "independent" of kinematic mixing when combining DD and BBN constraints
- Excluded big portion of parameter region favored by dwarf galaxies observations

Future: CJPL-II

B2 experimental hall

0

B2 experimental hall

PandaX-xT

- Intermediate stage:
 - PandaX-4T (4-ton target) with SI sensitivity ~10⁻⁴⁷ cm²
 - On-site assembly and commissioning: 2019-2020

PandaX-xT

- Intermediate stag

 - On-site assembly and commissioning: 2019-2020

Summary and outlook

- PandaX-II continues to probe the forefront of the dark matter particle models
- 2018 expected completion of PandaX-II
- Exciting upgrade plans and future opportunities at CJPL-II for PandaX