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Sanford	  Underground	  Research	  Facility	  

Davis	  Cavern	  1480	  m	  	  
(4300	  m	  water	  equivalent)	  

Lead,	  South	  Dakota	  
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The	  LUX	  Detector	  
•  Dual-‐phase	  Xe	  TPC	  
•  Ac<ve	  volume:	  250	  kg	  
•  Dimensions:	  59	  cm	  height	  by	  49	  cm	  

diameter	  
•  122	  PMTs	  split	  between	  top	  and	  

boCom	  arrays	  
•  Surrounded	  by	  7.6	  m	  diameter	  

water	  tank	  
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Events	  in	  Dual-‐phase	  Xe	  TPCs	  

•  Two	  scin<lla<on	  signals	  for	  
each	  event.	  	  
–  S1:	  de-‐excita<on	  of	  short-‐lived	  

xenon	  dimers	  
–  S2:	  electrons	  liberated	  at	  the	  

event	  site	  extracted	  into	  the	  
gas	  phase.	  

•  Time	  difference	  between	  
S1	  and	  S2	  gives	  depth	  

•  S2	  hit	  paCern	  gives	  lateral	  
posi<on	  informa<on	  

S1	  

S2	   E	  
field	  

S1	  

S2	  
	  

4	  
Comprehensive	  analysis	  paper:	  	  arXiv:1712.05696	  
Electric	  field	  modeling:	  JINST	  12	  P11022	  (2017)	  



Background	  and	  Signal	  Calibra<ons	  
Background	  Events	  
•  Electron	  Recoil	  (ER)	  
•  Higher	  charge-‐to-‐light	  ra<o	  
•  Calibrate	  using	  high-‐sta<s<cs	  

tri<um	  dataset	  (165,863	  events)	  
•  	  Phys.	  Rev.	  D	  93,	  072009	  

	  

	  

5	  

0 5 10 15 20 25 30 35 40 45 50
2

2.5

3

3.5

4

S1 detected photons

lo
g 10

(S
2)

0.5 keVee
1.7

2.9
4.2 5.4

6.6 7.8 9.0
10.2

S2=165 phd

ER Calibration

0 5 10 15 20 25 30 35 40 45 50
2

2.5

3

3.5

4

S1 detected photons

lo
g 10

(S
2)

3.0 keVnr

9.0
15.0

21.0
27.0 33.0 39.0 45.0 51.0

S2=165 phd

NR Calibration

Signal	  Events	  (WIMP-‐like)	  
•  Nuclear	  Recoils	  (NR)	  
•  Lower	  charge-‐to-‐light	  ra<o	  	  
•  Energy	  lost	  to	  atomic	  mo<on	  (quenching)	  
•  Calibrate	  using	  D-‐D	  neutrons	  

–  In-‐situ	  nuclear	  recoil	  (NR)	  calibra<on	  

•  	  arXiv:1608.05381	  
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WIMP	  Search	  data	  

6	  	  Phys.	  Rev.	  LeC.	  118,	  021303	  

Second	  science	  run:	  2014-‐2016	  (332	  live-‐days)	  

WIMP-‐search	  data	  within	  1	  cm	  of	  fiducial	  cut	  
	  



Profile	  Likelihood	  Ra<o	  (PLR)	  

7	  

i.e.	  	  Expected	  signal	  distribu<on	  for	  a	  33	  GeV	  WIMP	  •  Compares	  data	  to	  background	  distribu<on	  
and	  signal	  distribu<ons	  for	  different	  mass	  
models	  

•  Func<on	  of	  S1,	  S2,	  radius,	  depth	  and	  
azimuthal	  angle	  

•  Fit	  for	  systema<c	  parameters	  (derived	  from	  
DD	  data)	  

	  



Spin	  independent	  limit	  	  
from	  full	  LUX	  exposure	  

8	  	  Phys.	  Rev.	  LeC.	  118,	  021303	  



Spin	  Dependent	  Limit	  	  
from	  full	  LUX	  exposure	  

WIMP-‐neutron	   WIMP-‐proton	  

Phys.	  Rev.	  LeC.	  118,	  251302	   9	  
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tron recoils, which is higher than both the expected value
and our best-fit for nuclear recoils. This is consistent with
small recombination e↵ects that are not accounted for in
our model. If we assume ⌧3er = ⌧3nr = 23.97 ns and take
the recombination time distribution derived in Ref. [8]
(P (t) / [1 + (t/⌧

R

)]�2), simulations reproduce our best-
fit distribution with ⌧

R

⇡ 0.6 ns. This expression for
recombination time may not be directly applicable here,
as it is derived by solving a di↵usion equation with no ap-
plied electric field. However, we note that the qualitative
agreement with the empirical prediction of ⌧

R

= 0.7 ns
from Ref. [12] is encouraging. Regardless, our result for
⌧3er is still within the range of ⌧3 measurements available
in the literature [6, 11], indicating that recombination
plays a minor role in the pulse shapes for electron recoils
in our experiment.

VI. PULSE SHAPE DISCRIMINATION

A. Prompt Fraction Discriminator

To discriminate between the two types of events we
adapt a Prompt Fraction Discriminator (PFD), a stan-
dard technique which has been successfully adapted for
use in other liquid xenon and liquid argon dark matter
experiments [11, 16, 17, 47, 48]. The parameter is defined
as:

PF =

R
t1
t0 S1(t)dt
R
t3
t2 S1(t)dt

=

P
Prompt PhotonsP
Total Photons

. (6.1)

The four variables, t0, t1, t2, and t3, are allowed to vary
independently in the range of �30 to 170 ns to mini-
mize the leakage of ER events into the NR acceptance
region, where the ⇠50% NR acceptance region is defined
as everything above the NR median (NR). No additional
constraints on these parameters were imposed and cases
where t0 > t2, etc. were explored. For each combination
of times, the PF is applied to the calibration data and
we create a map of the fraction of event that appear in
the NR acceptance region. We choose the combination of
times that produces the minimum leakage as our PF and
the NR as our optimal Prompt Fraction Discriminator
(PFD).

To calculate an unbiased performance of the PFD we
separate the calibration datasets into two groups and ap-
ply a weighting to mitigate the energy dependence of the
source. The calibration datasets are divided into 10 phd
bins before events in each bin are randomly assigned to
either the training or the testing group. Both groups
contain 50% of the data and there is no statistically sig-
nificant di↵erence between their average detected pho-
ton time spectra, position, or energy distributions. The
training group of events are used to train our PFD. The
results of this PFD are applied to the events in the testing
group and are presented in this paper. Since the count

FIG. 7: Singlet/triplet ratio (C1⌧1/C3⌧3) measured for
nuclear recoils (Top) and electron recoils (Bottom) using
LUX calibration data. Only statistical uncertainties are
shown. Calibration sources are DD neutrons (red),
tritium (blue), and 14C (green). Measurements in
di↵erent energy bins are shown by the square points,
while the average across all energies is shown by the
solid line. A power law is fit to the data is presented by
the dashed line. We also show measurements of the ER
singlet/triplet ratio at zero field from Ref. [11] (cyan
diamonds), and a measurement using a 207Bi internal
conversion source at 4 kV/cm from Ref. [8] (purple
diamond). In Ref. [11], the singlet fraction (denoted F1)
is given rather than the singlet/triplet ratio. For direct
comparison to this work we make the conversion
(C1⌧1)/(C3⌧3) = F1/(1 + F1).

rate of the calibration sources is energy dependent, each
10 phd bin is weighted equally when calculating the to-
tal leakage and is not weighted by the number of events
in that particular bin. We optimize the PFD for a ‘flat’
distribution in pulse area.

Using the six di↵erent calibration campaigns carried
out at various times during WS2013 and WS2014-16, an
optimal PFD has been found. 14C was only injected at
the end of the LUXWS, whereas tritium and DD calibra-
tions were carried out during each of the five calibrations
campaigns. Carrying out the PFD optimization using

10	  

Pulse	  shape	  Discrimina<on	  Studies	  
•  Xenon	  can	  get	  excited	  into	  two	  states	  

with	  different	  life<mes:	  
–  Singlet=	  	  3	  ns	  
–  Triplet=	  24	  ns	  

•  Singlet	  to	  triplet	  ra<o	  different	  for	  NR	  
vs	  ER	  events	  

•  Discriminate	  on	  prompt	  frac<on:	  
	  
	  

•  Characteris<c	  <mes	  op<mized	  with	  
calibra<on	  data	  
–  Prompt	  Photon	  Window:	  -‐8	  to	  32	  ns	  
–  Total	  Photon	  Window:	  -‐14	  to	  134	  ns	  

DD	  neutron	  calibra<on	  

Tri<um	  calibra<on	  
14C	  calibra<on	  
	  

arXiv:1802.06162	  



Pulse	  shape	  Discrimina<on	  Studies	  
•  Use	  this	  discrimina<on	  in	  conjunc<on	  with	  standard	  charge-‐to-‐light	  ra<o	  

to	  improve	  overall	  discrimina<on	  power	  
•  Result:	  Decreases	  ER	  events	  in	  NR	  acceptance	  region	  by	  factor	  of	  2	  

11	  arXiv:1802.06162	  

NR	  Acceptance	   ER	  Rejec<on	  



Effec<ve	  Field	  Theory	  
•  More	  general	  Lagrangian	  for	  WIMP-‐nucleus	  interac<ons	  

–  Nuclear	  responses	  which	  may	  depend	  on	  new	  parameters	  like	  angular	  momentum,	  spin	  
orbit	  coupling,	  etc	  

12	  

	  Formula<on:	  Fitzpatrick	  et	  al.	  arXiv:1203.3542	  
	  Package	  for	  compu<ng	  nuclear	  responses:	  arXiv:1308.6288	  	  
	  Original	  paper	  applying	  EFT	  to	  DM	  arXiv:1008.1591	  

	  

4

convention of Fitzpatrick et al. [22],

d�

dE
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32⇡v2
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(2j
A

+ 1)(2j
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+ 1)
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X

Spins

|M|2

(3)

where a factor of 1/(4m
�

m

A

)2 is included in order to ac-
count for the normalization used in matching relativistic
WIMP-nucleon interaction operators to the correspond-
ing nonrelativistic operators.

The formalism detailed in [22–25] models the WIMP-
nucleon interaction as a four-particle contact interaction
in order to calculate the WIMP scattering amplitude
|M|2. The interaction Lagrangian takes the generic form

L
int

= �̄O
�

�

N̄O
N

N ⌘ O�̄�

N̄N (4)

where � and N are nonrelativistic fields denoting the
incident WIMP and the target nucleon, respectively. Al-
though we do not consider WIMP inelastic scattering,
note that it can be treated by generalizing to �̄

1

O
�

�

2

,
where �

1

and �

2

have di↵erent masses.
Under conservation of momentum and Galilean in-

variance, the four momenta of the particles can be re-
duced to a basis of two independent momenta. It is
convenient to choose these two momenta to be the Her-
mitian quantities i~q, where ~q is the momentum transfer
imparted from the incident WIMP to the target nucleon,
and ~v

?, which is the component of WIMP incident veloc-
ity ~v transverse to ~q. Specifically, ~v? = ~v+~q/2µ

N

, where
µ

N

= m

�

m

N

(m
�

+m

N

)�1 is the WIMP-nucleon reduced
mass. All WIMP-nucleon operators subject to these ba-
sic symmetries can be written as a combination of these
two momenta, the nucleon spin ~

S

N

, and the WIMP spin
~

S

�

.
For a WIMP-nucleon interaction that involves the

exchange of a spin-0 or spin-1 mediator, there are 11
distinct possible combinations:
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There are five additional possible operators that arise
only in exotic interactions not involving the exchange of

spin-0 or spin-1 mediators:

O
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Operator O
2

to leading order does not arise in the nonrel-
ativistic limit to any relativistic operator, and operator
O

16

can be written as a linear combination of operators
O

12

and O
15

. In what follows, we retain the fourteen
operators O

1

and O
3

, . . .O
15

. Let c
i

denote the coupling
constant associated with operator O

i

. The most general
WIMP-nucleon interaction Lagrangian is

L
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=
X

i

c
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In direct detection, the nucleon involved in a WIMP-
nucleon interaction lies in a bound state within a target
atomic nucleus. The operator governing the interaction
must therefore be inserted between nuclear states in or-
der to calculate the nuclear response. For the 14 e↵ec-
tive field theory operators, there are six kinds of nuclear
charges and currents that can be created. These can be
constructed from individual nucleon’s available degrees
of freedom ~

S

N

and ~v

?
N

, where ~v

?
N

= ~v

? - ~v

?
CM

is the
nucleon’s velocity with respect to the nuclear center of
mass, perpendicular to the momentum transfer ~q. The
six possible nuclear charges and currents are

1, ~v?
N

· ~v?
N

,

~

S

N

· ~v?
N

,

~

S

N

, ~v

?
N

, and ~

S

N

⇥ ~v

?
N

(8)

~v

?
N

· ~v?
N

is again neglected, and each of the five remain-
ing nuclear charges and currents gives rise to a di↵erent
nuclear response.

An explicit calculation of the dark matter scatter-
ing amplitude in momentum space shows that under the
assumptions of good parity and CP most o↵-diagonal
terms vanish, and there are only six surviving nuclear
operators [22, 23]. Let M

JM

(q~r) ⌘ j

J

(qr)Y
JM

(✓,�)
and ~

M

M

JL

(q~r) ⌘ j

L

(qr)~Y
JLM

(✓,�), where Y

JM

(✓,�) and
~

Y

JLM

(✓,�) are the scalar and vector spherical harmon-
ics and j

J

(x) is the spherical Bessel function. Let also
~� denote the dark matter spin operator. Then these six



•  First	  science	  run	  (85	  live	  days)	  
–  Follows	  ini<al	  LUX	  analysis	  (Phys.	  Rev.	  LeC.	  112,	  091303)	  	  
–  Nicole	  Larson,	  thesis	  

•  Full	  science	  run	  (427	  live	  days)	  
–  Follows	  Phys.	  Rev.	  LeC.	  118,	  021303	  
	  

Effec<ve	  field	  theory	  analyses	  in	  LUX	  
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TABLE I. The upper energy threshold E
max

(in keVnr) for
each of the e↵ective field theory operators, such that an energy
window from 0 to E

max

captures either 50% or 90% of WIMP-
neutron recoil events for the given operator and WIMP mass.

Operator
50-GeV WIMP 500-GeV WIMP
E50%

max

E90%
max

E50%
max

E90%
max

(keVnr) (keVnr) (keVnr) (keVnr)
SI 10.8 27.3 16.6 44.7
O1 6.8 21.7 11.8 43.8
O3 26.4 49.1 148.1 344.4
SD 8.6 21.6 11.9 37.5
O4 7.0 24.0 32.8 299.6
O5 16.2 38.6 65.5 328.9
O6 33.6 64.0 267.3 433.7
O7 5.0 16.2 25.2 279.9
O8 6.8 22.2 14.5 64.8
O9 13.7 37.2 276.7 464.7
O10 21.7 48.6 112.6 340.4
O11 15.5 34.4 39.0 279.9
O12 17.4 38.1 34.8 176.5
O13 28.2 53.2 54.5 219.7
O14 11.9 27.9 240.9 400.0
O15 34.3 59.1 261.2 433.7

A. Extending the LUX WIMP Search Window

We maximize our WIMP search sensitivity by redefining
the energy window to match the shape of the expected
spectra. An upper threshold E

max

for our search win-
dow is selected by integrating under the spectrum from
0 keV

nr

to E

max

and choosing E

max

such that the area
contained in the integral reaches a desired fraction of the
total area. Results for WIMP-neutron interactions are
shown in Table I. WIMP-proton interactions yield sim-
ilar results. Note that, for 50-GeV WIMPs, an upper
energy threshold of 65 keV is su�cient to capture 90% of
events. For 500-GeV WIMPs, an upper threshold of 400-
500 keV is necessary to capture 90% of events. There-
fore, we must aim to understand the behavior of the LUX
detector at recoil energies well beyond the ⇠2-30 keV

nr

energy window used for the LUX SI analyses.
Unfortunately, calibration data on nuclear recoils in

xenon at the upper end of this energy window is lim-
ited. LUX’s low-energy D-D NR calibration data has an
endpoint of 74 keV

nr

[28]. Higher-energy nuclear recoils
can be simulated using the NEST (Noble Element Sim-
ulation Technique) software package [33] used in other
LUX analyses. Because NEST is based on existing ex-
perimental data, uncertainties in the extrapolated charge
and light yield above 150 keV

nr

can in theory be quite
large. Additionally, the presence of trace 83mKr events
following calibrations during the 2013 dataset must be
taken into account. 83mKr decays by emitting two con-
version electrons one right after another, at 32.1 keV and
9.4 keV respectively, with a characteristic time of only
154 ns between them [34]. This is well below the timing
resolution of the detector, so a 83mKr decay appears as
a single 41.5 keV

ee

(keV electron equivalent) ER event.

Energy (keVee)
20 25 30 35 40 45 50 55 60 65

C
ou

nt
s

×104

0

0.5

1

1.5

2

2.5
Kr peak, mean
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FIG. 3. The distribution of 83mKr events in the LUX first
WIMP search dataset, which we use as a driver for determin-
ing where to place the upper energy threshold E

max

.

FIG. 4. The conversion from electron equivalent recoil energy
(keVee) to true energy (keVnr) predicted by NEST for nuclear
recoil events. The two conversions used for this analysis are
shown by the blue line (predicted by NEST) and by the up-
per boundary of the green shaded region representing a 1�
uncertainty (conservative choice). The black points indicate
data from the LUX D-D calibration. The black dashed line
indicates the conversion used in the initial analysis of the first
underground run.

While the 41.5 keV
ee

peak lies above the energy window
used in the SI analyses, it could contribute background
to extended energy windows. To account for this, we fit
a Gaussian to the Kr peak as measured from the WIMP
search data, which results in a mean of 41.46 keV

ee

and
a standard deviation � = 2.29 keV

ee

. We take E

max

= 30.01 keV
ee

, which corresponds to 5� away from the
mean of the 83mKr peak (Fig. 3), as our ultimate upper
threshold.

The uncertainties in the nuclear recoil model are rel-
evant only when converting the thresholds of our en-
ergy window from keV

ee

to keV
nr

, where keV
nr

indi-
cates the true energy of an NR event. NR energies are
calculated using a modified Lindhard formula with k-
value k = 0.1735 that takes into account both biexci-
tonic quenching and Penning ionization [10]. Using the

•  Generate	  new	  signal	  model	  in	  PLR	  for	  the	  nuclear	  response	  expected	  for	  
each	  operator	  at	  each	  test	  mass	  
–  Consider	  operators	  and	  WIMP-‐proton	  and	  WIMP-‐neutron	  couplings	  individually	  

•  Expanding	  energy	  window	  of	  analysis	  
–  S<ll	  studying	  pulse	  and	  event	  classifica<on	  efficiency	  at	  the	  higher	  energies	  
–  See	  Kelsey’s	  talk	  later	  this	  akernoon	  
–  Today	  will	  show	  O1	  and	  O8	  

14	  
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convention of Fitzpatrick et al. [22],
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where a factor of 1/(4m
�

m

A

)2 is included in order to ac-
count for the normalization used in matching relativistic
WIMP-nucleon interaction operators to the correspond-
ing nonrelativistic operators.

The formalism detailed in [22–25] models the WIMP-
nucleon interaction as a four-particle contact interaction
in order to calculate the WIMP scattering amplitude
|M|2. The interaction Lagrangian takes the generic form

L
int

= �̄O
�

�

N̄O
N

N ⌘ O�̄�

N̄N (4)

where � and N are nonrelativistic fields denoting the
incident WIMP and the target nucleon, respectively. Al-
though we do not consider WIMP inelastic scattering,
note that it can be treated by generalizing to �̄

1

O
�

�

2

,
where �

1

and �

2

have di↵erent masses.
Under conservation of momentum and Galilean in-

variance, the four momenta of the particles can be re-
duced to a basis of two independent momenta. It is
convenient to choose these two momenta to be the Her-
mitian quantities i~q, where ~q is the momentum transfer
imparted from the incident WIMP to the target nucleon,
and ~v

?, which is the component of WIMP incident veloc-
ity ~v transverse to ~q. Specifically, ~v? = ~v+~q/2µ

N

, where
µ

N

= m

�

m

N

(m
�

+m

N

)�1 is the WIMP-nucleon reduced
mass. All WIMP-nucleon operators subject to these ba-
sic symmetries can be written as a combination of these
two momenta, the nucleon spin ~

S

N

, and the WIMP spin
~

S

�

.
For a WIMP-nucleon interaction that involves the

exchange of a spin-0 or spin-1 mediator, there are 11
distinct possible combinations:

O
1

= 1

O
2

= (v?)2

O
3

= i

~

S

N

· (~q ⇥ ~v

?)

O
4

= ~

S

�

· ~S
N

O
5

= i

~

S

�

· (~q ⇥ ~v

?)

O
6

= (~S
�

· ~q)(~S
N

· ~q)
O

7

= ~

S

N

· ~v?
O

8

= ~

S

�

· ~v?
O

9

= i

~

S

�

· (~S
N

⇥ ~q)

O
10

= i

~

S

N

· ~q
O

11

= i

~

S

�

· ~q (5)

There are five additional possible operators that arise
only in exotic interactions not involving the exchange of

spin-0 or spin-1 mediators:

O
12

= ~

S

�

· (~S
N

⇥ ~v

?)

O
13

= i(~S
�

· ~v?)(~S
N

· ~q)
O

14

= i(~S
�

· ~q)(~S
N

· ~v?)
O

15

= �(~S
�

· ~q)((~S
N

⇥ ~v

?) · ~q)
O

16

= �((~S
�

⇥ ~v

?) · ~q)(~S
N

· ~q) (6)

Operator O
2

to leading order does not arise in the nonrel-
ativistic limit to any relativistic operator, and operator
O

16

can be written as a linear combination of operators
O

12

and O
15

. In what follows, we retain the fourteen
operators O

1

and O
3

, . . .O
15

. Let c
i

denote the coupling
constant associated with operator O

i

. The most general
WIMP-nucleon interaction Lagrangian is

L
int

=
X

i

c

i

O
i

= c

1

+ ic

3

~

S

N

· (~q ⇥ ~v

?) + c

4

~

S

�

· ~S
N

+ ic

5

~

S

�

· (~q ⇥ ~v

?) + c

6

(~S
�

· ~q)(~S
N

· ~q)
+ c

7

~

S

N

· ~v? + c

8

~

S

�

· ~v? + ic

9

~

S

�

· (~S
N

⇥ ~q)

+ ic

10

~

S

N

· ~q + ic

11

~

S

�

· ~q + c

12

~

S

�

· (~S
N

⇥ ~v

?)

+ ic

13

(~S
�

· ~v?)(~S
N

· ~q) + ic

14

(~S
�

· ~q)(~S
N

· ~v?)
+�c

15

(~S
�

· ~q)((~S
N

⇥ ~v

?) · ~q) (7)

In direct detection, the nucleon involved in a WIMP-
nucleon interaction lies in a bound state within a target
atomic nucleus. The operator governing the interaction
must therefore be inserted between nuclear states in or-
der to calculate the nuclear response. For the 14 e↵ec-
tive field theory operators, there are six kinds of nuclear
charges and currents that can be created. These can be
constructed from individual nucleon’s available degrees
of freedom ~

S

N

and ~v

?
N

, where ~v

?
N

= ~v

? - ~v

?
CM

is the
nucleon’s velocity with respect to the nuclear center of
mass, perpendicular to the momentum transfer ~q. The
six possible nuclear charges and currents are

1, ~v?
N

· ~v?
N

,

~

S

N

· ~v?
N

,

~

S

N

, ~v

?
N

, and ~

S

N

⇥ ~v

?
N

(8)

~v

?
N

· ~v?
N

is again neglected, and each of the five remain-
ing nuclear charges and currents gives rise to a di↵erent
nuclear response.

An explicit calculation of the dark matter scatter-
ing amplitude in momentum space shows that under the
assumptions of good parity and CP most o↵-diagonal
terms vanish, and there are only six surviving nuclear
operators [22, 23]. Let M

JM

(q~r) ⌘ j

J

(qr)Y
JM

(✓,�)
and ~

M

M

JL

(q~r) ⌘ j

L

(qr)~Y
JLM

(✓,�), where Y

JM

(✓,�) and
~

Y

JLM

(✓,�) are the scalar and vector spherical harmon-
ics and j

J

(x) is the spherical Bessel function. Let also
~� denote the dark matter spin operator. Then these six
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Observed	  limits	  for	  O1	  and	  O8	  



Summary	  
•  Two	  science	  runs:	  2013	  (85	  live	  days)	  &	  2014-‐2016	  (332	  live	  

days)	  
–  	  Phys.	  Rev.	  LeC.	  118,	  021303	  combines	  these	  data	  using	  updated	  

calibra<ons	  and	  analysis	  tools	  
•  Demonstrated	  PSD,	  which	  improve	  discrimina<on	  poten<al	  
•  Applying	  new	  analysis	  tools	  to	  EFT	  analysis	  

–  S<ll	  working	  on	  some	  higher	  energy	  pulse	  classifica<on	  studies	  
•  More	  new	  results:	  

–  Annual/Diurnal	  rate	  modula<on	  
•  See	  Jingke	  Xu’s	  talk	  following	  this	  one	  

–  Updated	  background	  analyses	  
•  See	  Kelsey	  Oliver-‐Mallory’s	  talk	  later	  this	  akernoon	  
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