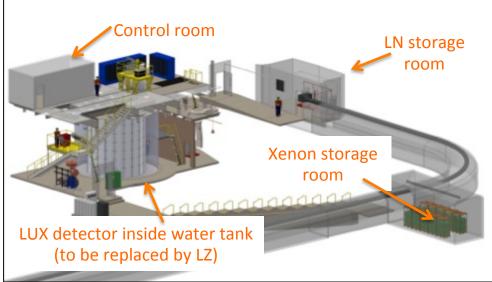
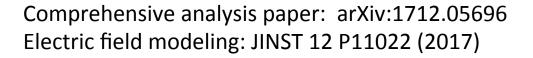

Overview and New Results from the LUX Experiment

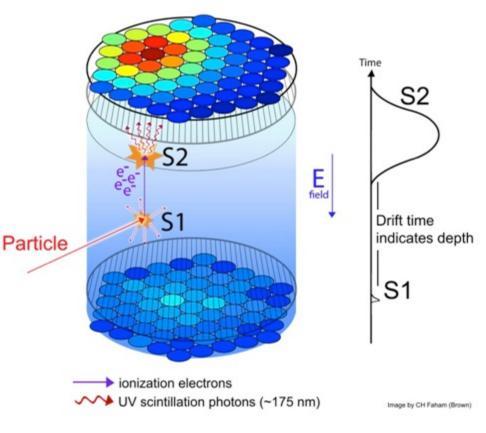
Christina Ignarra UCLA Dark Matter February 23rd, 2018



Sanford Underground Research Facility

Davis Cavern 1480 m (4300 m water equivalent) Lead, South Dakota

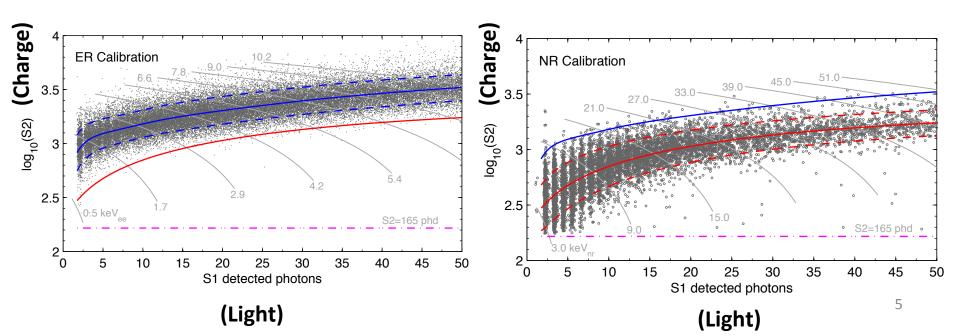

The LUX Detector


- Dual-phase Xe TPC
- Active volume: 250 kg
- Dimensions: 59 cm height by 49 cm diameter
- 122 PMTs split between top and bottom arrays
- Surrounded by 7.6 m diameter water tank

Thermosyphon
Copper shield
Top PMT array
Anode grid
Gate grid
PTFE reflector panels and field cage
—— Cathode grid
Bottom PMT array

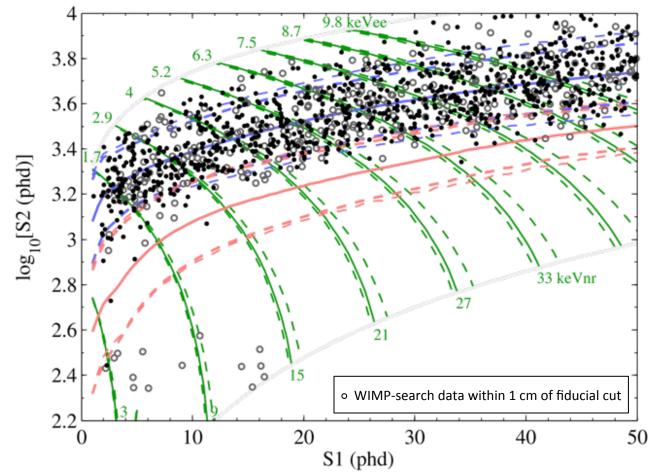
Events in Dual-phase Xe TPCs

- Two scintillation signals for each event.
 - S1: de-excitation of short-lived xenon dimers
 - S2: electrons liberated at the event site extracted into the gas phase.
- Time difference between
 S1 and S2 gives depth
- S2 hit pattern gives lateral position information


Background and Signal Calibrations

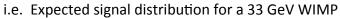
Background Events

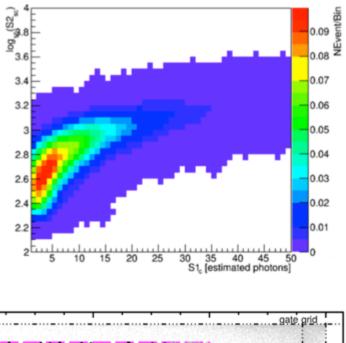
- Electron Recoil (ER)
- Higher charge-to-light ratio
- Calibrate using high-statistics tritium dataset (165,863 events)
- Phys. Rev. D 93, 072009

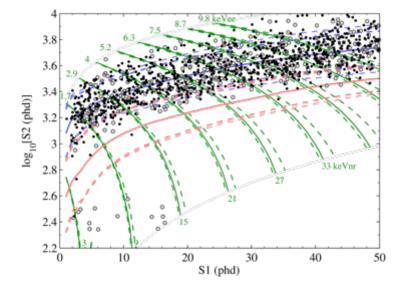

Signal Events (WIMP-like)

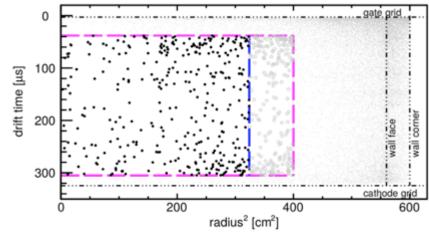
- Nuclear Recoils (NR)
- Lower charge-to-light ratio
- Energy lost to atomic motion (quenching)
- Calibrate using D-D neutrons
 - In-situ nuclear recoil (NR) calibration
- arXiv:1608.05381

WIMP Search data

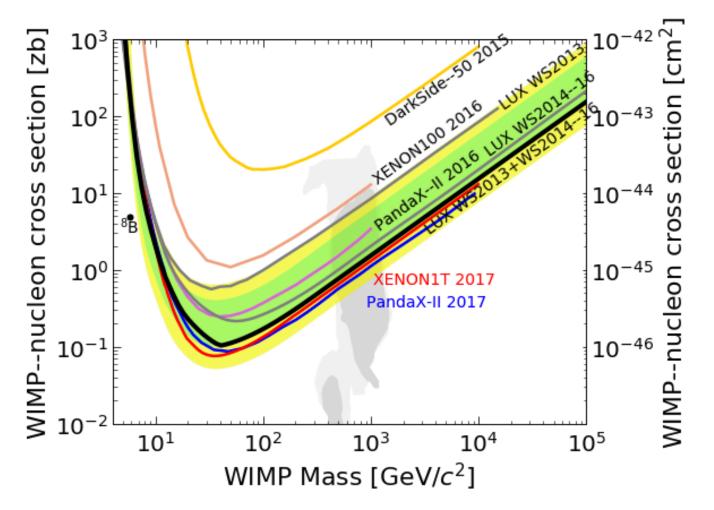

Second science run: 2014-2016 (332 live-days)

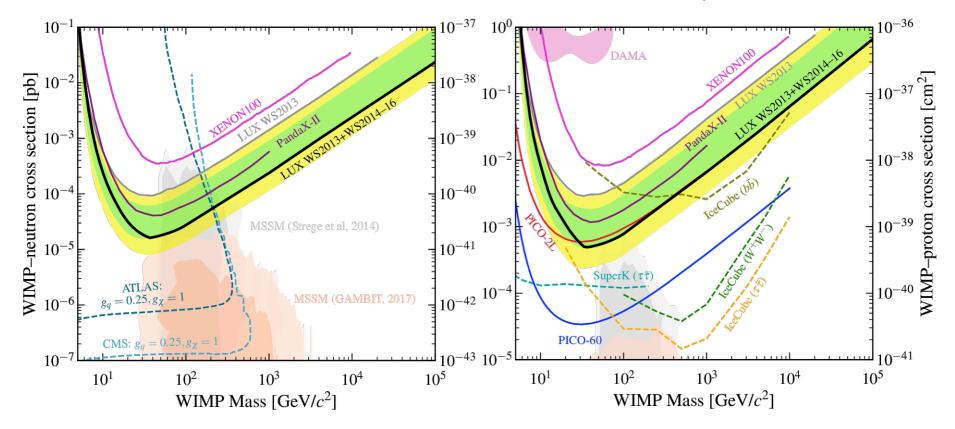



Phys. Rev. Lett. 118, 021303


Profile Likelihood Ratio (PLR)

- Compares data to background distribution and signal distributions for different mass models
- Function of S1, S2, radius, depth and azimuthal angle
- Fit for systematic parameters (derived from DD data)

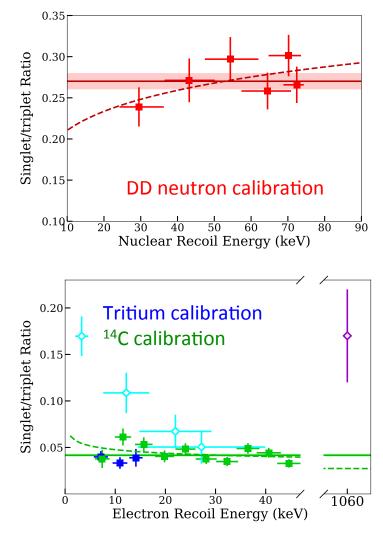



Spin independent limit from full LUX exposure

Spin Dependent Limit from full LUX exposure

WIMP-neutron

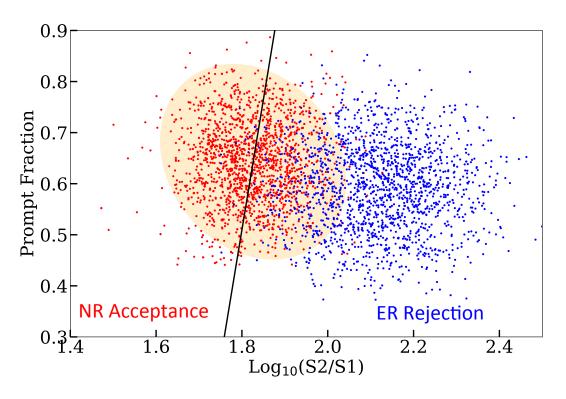
WIMP-proton



Pulse shape Discrimination Studies

- Xenon can get excited into two states with different lifetimes:
 - Singlet= 3 ns
 - Triplet= 24 ns
- Singlet to triplet ratio different for NR vs ER events
- Discriminate on prompt fraction:

$$PF = \frac{\int_{t0}^{t1} \mathrm{S1}(t)dt}{\int_{t2}^{t3} \mathrm{S1}(t)dt} = \frac{\sum \mathrm{Prompt Photons}}{\sum \mathrm{Total Photons}}$$


- Characteristic times optimized with calibration data
 - Prompt Photon Window: -8 to 32 ns
 - Total Photon Window: -14 to 134 ns

arXiv:1802.06162

Pulse shape Discrimination Studies

- Use this discrimination in conjunction with standard charge-to-light ratio to improve overall discrimination power
- Result: Decreases ER events in NR acceptance region by factor of 2

arXiv:1802.06162

Effective Field Theory

- More general Lagrangian for WIMP-nucleus interactions
 - Nuclear responses which may depend on new parameters like angular momentum, spin orbit coupling, etc

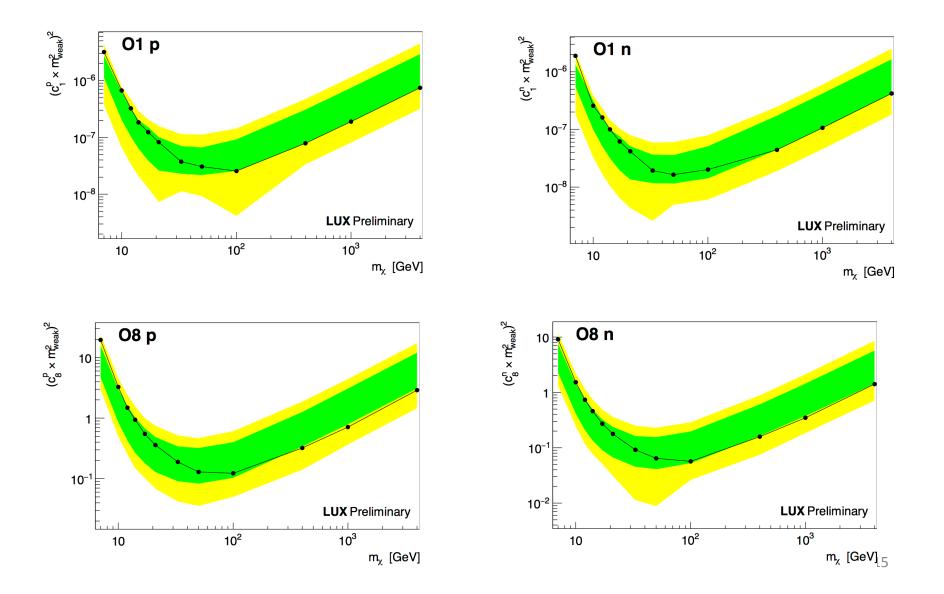
$$\begin{aligned} \mathcal{L}_{\text{int}} &= \sum_{i} c_{i} \mathcal{O}_{i} \\ &= c_{1} + i c_{3} \vec{S}_{N} \cdot (\vec{q} \times \vec{v}^{\perp}) + c_{4} \vec{S}_{\chi} \cdot \vec{S}_{N} \\ &+ i c_{5} \vec{S}_{\chi} \cdot (\vec{q} \times \vec{v}^{\perp}) + c_{6} (\vec{S}_{\chi} \cdot \vec{q}) (\vec{S}_{N} \cdot \vec{q}) \\ &+ c_{7} \vec{S}_{N} \cdot \vec{v}^{\perp} + c_{8} \vec{S}_{\chi} \cdot \vec{v}^{\perp} + i c_{9} \vec{S}_{\chi} \cdot (\vec{S}_{N} \times \vec{q}) \\ &+ i c_{10} \vec{S}_{N} \cdot \vec{q} + i c_{11} \vec{S}_{\chi} \cdot \vec{q} + c_{12} \vec{S}_{\chi} \cdot (\vec{S}_{N} \times \vec{v}^{\perp}) \\ &+ i c_{13} (\vec{S}_{\chi} \cdot \vec{v}^{\perp}) (\vec{S}_{N} \cdot \vec{q}) + i c_{14} (\vec{S}_{\chi} \cdot \vec{q}) (\vec{S}_{N} \cdot \vec{v}^{\perp} \\ &+ - c_{15} (\vec{S}_{\chi} \cdot \vec{q}) ((\vec{S}_{N} \times \vec{v}^{\perp}) \cdot \vec{q}) \end{aligned}$$

Formulation: Fitzpatrick et al. arXiv:1203.3542 Package for computing nuclear responses: arXiv:1308.6288 Original paper applying EFT to DM arXiv:1008.1591

Effective field theory analyses in LUX

- First science run (85 live days)
 - Follows initial LUX analysis (Phys. Rev. Lett. 112, 091303)
 - Nicole Larson, thesis
- Full science run (427 live days)
 - Follows Phys. Rev. Lett. 118, 021303

Effective field theory analyses in LUX


- Generate new signal model in PLR for the nuclear response expected for each operator at each test mass
 - Consider operators and WIMP-proton and WIMP-neutron couplings individually
- Expanding energy window of analysis
 - Still studying pulse and event classification efficiency at the higher energies
 - See Kelsey's talk later this afternoon
 - Today will show O1 and O8

$$\begin{aligned} \mathcal{L}_{\text{int}} &= \sum_{i} c_{i} \mathcal{O}_{i} \\ &= \underbrace{c_{1}}_{i} + i c_{3} \vec{S}_{N} \cdot (\vec{q} \times \vec{v}^{\perp}) + c_{4} \vec{S}_{\chi} \cdot \vec{S}_{N} \\ &+ i c_{5} \vec{S}_{\chi} \cdot (\vec{q} \times \vec{v}^{\perp}) + c_{6} (\vec{S}_{\chi} \cdot \vec{q}) (\vec{S}_{N} \cdot \vec{q}) \\ &+ c_{7} \vec{S}_{N} \cdot \vec{v}^{\perp} + c_{8} \vec{S}_{\chi} \cdot \vec{v} + i c_{9} \vec{S}_{\chi} \cdot (\vec{S}_{N} \times \vec{q}) \\ &+ i c_{10} \vec{S}_{N} \cdot \vec{q} + i c_{11} \vec{S}_{\chi} \cdot \vec{q} + c_{12} \vec{S}_{\chi} \cdot (\vec{S}_{N} \times \vec{v}^{\perp}) \\ &+ i c_{13} (\vec{S}_{\chi} \cdot \vec{v}^{\perp}) (\vec{S}_{N} \cdot \vec{q}) + i c_{14} (\vec{S}_{\chi} \cdot \vec{q}) (\vec{S}_{N} \cdot \vec{v}^{\perp}) \\ &+ - c_{15} (\vec{S}_{\chi} \cdot \vec{q}) ((\vec{S}_{N} \times \vec{v}^{\perp}) \cdot \vec{q}) \end{aligned}$$

	$50\text{-}\mathrm{GeV}$		500-GeV	
Operator	$E_{max}^{50\%}$	$E_{max}^{90\%}$	$E_{max}^{50\%}$	$E_{max}^{90\%}$
	(keV_{nr})	(keV_{nr})	(keV_{nr})	(keV_{nr})
SI	10.8	27.3	16.6	44.7
\mathcal{O}_1	6.8	21.7	11.8	43.8
\mathcal{O}_3	26.4	49.1	148.1	344.4
SD	8.6	21.6	11.9	37.5
\mathcal{O}_4	7.0	24.0	32.8	299.6
\mathcal{O}_5	16.2	38.6	65.5	328.9
${\cal O}_6$	33.6	64.0	267.3	433.7
\mathcal{O}_7	5.0	16.2	25.2	279.9
\mathcal{O}_8	6.8	22.2	14.5	64.8
\mathcal{O}_9	13.7	37.2	276.7	464.7
${\cal O}_{10}$	21.7	48.6	112.6	340.4
\mathcal{O}_{11}	15.5	34.4	39.0	279.9
\mathcal{O}_{12}	17.4	38.1	34.8	176.5
${\cal O}_{13}$	28.2	53.2	54.5	219.7
\mathcal{O}_{14}	11.9	27.9	240.9	400.0
${\cal O}_{15}$	34.3	59.1	261.2	433.7

Nicole Larson, Thesis

Observed limits for O1 and O8

Summary

- Two science runs: 2013 (85 live days) & 2014-2016 (332 live days)
 - Phys. Rev. Lett. 118, 021303 combines these data using updated calibrations and analysis tools
- Demonstrated PSD, which improve discrimination potential
- Applying new analysis tools to EFT analysis
 - Still working on some higher energy pulse classification studies
- More new results:
 - Annual/Diurnal rate modulation
 - See Jingke Xu's talk following this one
 - Updated background analyses
 - See Kelsey Oliver-Mallory's talk later this afternoon