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Large Underground Xenon (LUX) Detector

e Two-phase xenon time projection
chamber
e An interacting particle deposits

energy in two channels
o  Excitation
o Ionization

e Prompt scintillation (S1 signal) is
immediately detected by PMTs

e Electrons are drifted upward and
extracted into the gas phase
region creating secondary
scintillation detected by the
PMTs (S2 signal)
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In Jan 2017, LUX published final spin independent WIMP limit (~ 1-10 keVee)

Data from two runs: WS-2013 (95 live days) and WS-2014/16 (332 live days)

Now we’re looking at high energy physics processes

Additional backgrounds from @, €, and isomeric transition decays in the xenon

This talk will present background search results from WS-2014/16 in the energy range o - 425 keVee



Outline

1. Calibration of WS-2014/16
electron recoil energy scale

2. Four sources backgrounds:

a. Short lived radioisotopes from
activation of the xenon with a
DD neutron generator
calibrations

b. 2'°Pb from ***Rn daughter
plate-out on detector surfaces

c. Detector effects, such as PMT
afterpulsing, photoionization
of grids and impurities, and
electron trains

d. Neutron backgrounds from
PMTs and PTFE




WS-2014/16 Calibration Data

e Every three months we perform:
o Calibrations of the electron recoil (ER) band, light and charge yields with tritium source
o Calibrations of the nuclear recoil (NR) band, light and charge yields with 2.45 MeV neutrons from a
DD generator
o Calibrations of the energy of electron recoils in the detector using 3"™Xe, '*9™Xe, '*5Xe
xenon activation lines from the DD neutron generator
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LUX ER Energy Calibration

e g1 and g2 calculated at each DD calibration time
E =W (S1/g1 + S2/g2) - v -
e g1 and g2 interpolated to the midpoint of each date bin
g1 = efficiency for detection of a prompt scintillation photons
g2 = efficiency/gain for detection of electron signal 0.104
W = average energy to produce a single excited or ionized atom = LUX
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Short Lived DD-n Activation of Xe

2 Weeks of Background Following Sep 2014 DD Run
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e In addition to activation peaks, ®3™Kr (continuously being injected for
calibration) is visible
e Data on this slide follows the multiple neutron calibration runs

over 5 weeks at different z-depths that occured in Sep 2014
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Determination of Short Lived Xe Activation Isotopes

Decay Mode Energy * Measured Energy Half Life * Measured Decay Constant
1251 e 67.3 keV ** 67.1 + 0.4 keV 59.4 d 54 +0.4 d ***
133X e B+IT | Quax = 346.4 + IT 81 keV 5.2475 d 2.0 + 03 d
Blmye IT 163.9 keV 163.6 + 0.1 keV 11.84 d 10.7 + 0.4 d
120myo IT 236.1 keV 235.3 + 0.1 keV 8.88 d 9.1 + 0.3 d
125% e n 275 keV ** 275.5 + 0.6 keV 16.9 h
Ilsrgli)r(n inary Uncertainties in table are statistical uncertainty in the fit for energy or half life

*Energy and half life measurements from National Nuclear Data Center website
(http://www.nndc.bnl.gov/chart/chartNuc.jsp)

**An estimate of energy deposited in electron recoils in LUX from a K-shell electron capture

***Effective half life. Represents rate at which '*°I is removed from the xenon by the getter.
Energy is the close the two neutrino Double Electron Capture *4Xe Energy (63.6 keV)



210Ph on Detector surfaces

During construction
?22Rn progeny plate
out on the inner
PTFE walls of the
detector

All short lived
isotopes decay away
leaving *'°Pb, *'°Bi,
and *'°Po

These isotopes can
be absorbed off of
the walls into the
Xenon
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210PhH on Walls
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Fit requires contributions from *'°Pb conversion electrons in the
80%: B 17.0 keV.

range 30.1-33.1 keV, 2'°Pb conversion electrons and gamma ray in 210pp
range 42.6-46.5 keV, and xenon fluorescence in range 29.5-34.5

keV. Lower limit is set assuming LUX is capable of seeing a fractionggo,: g 63.5 keV
of the *'°Pb decay products on the wall.
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210P}h 1n the Fiducial Volume

Background rate is estimated in 17 keV beta region

using sidebands. Limit is set at 90% confidence pors Yl k
interval as defined in: Applied Radiation and Isotopes Pb NN <
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Limit on Leaching of #'°Pb into Xenon

e Activity of *'°Pb was measured for
4% Decay of *'°Pb over 500 days each date bin

frobmitont,, e If there is no leaching, 2'°Pb
activity will decay by 4% over
length of WS-2014/16

\ e Limit on decay constant for
[F—— || leaching of *'°Pb from detector
i' walls is given as the fit value less 1-

i o, correcting for 4% *'°Pb decay
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Detector Effects: High Energy Event Classification

Following Large Sis:

e PMT afterpulsing

o  During PMT calibrations the probability of afterpulsing was measured
o  The results of this calibration were not folded into the pulse/event classification algorithm for
high energy data

e Photo-ionization of the grids and impurities in the xenon
Following Large S2s:

e Electron trains
o Trails of electrons caused by:
m Photo-ionization of impurities
m Emission of thermalized electrons not emitted in the primary S2 signal
m Etc.
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Spurious Pulse Classification Algorithm
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Simulation of Neutron Backgrounds

e PMTs

o  Neutrons from (a,n) from 23%U-chain o’s
o Neutrons from (a,n) from 23°Th-chain o’s
o Neutrons from 235U-chain fission

e PTFE

o Neutrons from (a,n) from 2'°Po (?38U late) chain «’s
e LUXSim was used to simulate energy
depositions and libNEST was used to
simulate the detector response
Applied relevant data quality cuts
Results (WIMP search ROI during

WS-2014/16, 332 live days)
o  0.16 events from PMTs LUX J ,
o 0.016 events from PTFE Fhelineg View of LUX TPC from below
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Conclusion

e Short lived activation products from DD neutron generator (including **51
with effective decay constant 5.4 + 0.4 days)

e 2°Pb on the detector wall and in the fiducial volume (1600 day t, o for
leaching from the walls into the fiducial volume)

e Detector effects, such as PMT afterpulsing, photoionization of grids and
impurities, and electron trains (10x acceptance increase for 3'™Xe)

e Neutron background from PMTs (0.16 events during WS-2014/16) and
PTFE (0.016 events during WS-2014/16)

Thanks go to: the LUX Collaboration

Special thanks go to: Shaun Alsum, Vetri Velan, Sergey Burdin, Elizabeth Boulton, Rachel Mannino,
Quentin Riffard, Scott Kravitz, Evan Pease, Claudio Pascoal, and Kevin Lesko
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