Determination of Backgrounds for the LUX Experiment

Kelsey C Oliver-Mallory

UC Berkeley & Lawrence Berkeley National Laboratory February 23, 2018 UCLA Dark Matter 2018

On behalf of the LUX collaboration

Large Underground Xenon (LUX) Detector

- Two-phase xenon time projection chamber
- An interacting particle deposits energy in two channels
 - Excitation
 - Ionization
- Prompt scintillation (S1 signal) is immediately detected by PMTs
- Electrons are drifted upward and extracted into the gas phase region creating secondary scintillation detected by the PMTs (S2 signal)

Extending Energy

- In Jan 2017, LUX published final spin independent WIMP limit (~ 1-10 keVee)
- Data from two runs: WS-2013 (95 live days) and WS-2014/16 (332 live days)
- Now we're looking at high energy physics processes
- Additional backgrounds from β , ε , and isomeric transition decays in the xenon
- This talk will present background search results from WS-2014/16 in the energy range 0 425 keVee

Outline

- 1. Calibration of WS-2014/16 electron recoil energy scale
- 2. Four sources backgrounds:
 - a. Short lived radioisotopes from activation of the xenon with a DD neutron generator calibrations
 - b. ²¹⁰Pb from ²²²Rn daughter plate-out on detector surfaces
 - c. Detector effects, such as PMT afterpulsing, photoionization of grids and impurities, and electron trains
 - d. Neutron backgrounds from PMTs and PTFE

WS-2014/16 Calibration Data

- Every three months we perform:
 - Calibrations of the electron recoil (ER) band, light and charge yields with tritium source
 - Calibrations of the nuclear recoil (NR) band, light and charge yields with 2.45 MeV neutrons from a DD generator
 - Calibrations of the energy of electron recoils in the detector using ^{131m}Xe, ^{129m}Xe, ¹²⁵Xe xenon activation lines from the DD neutron generator

The **data is divided into four date bins** and specific energy reconstruction parameters are applied to each bin

LUX ER Energy Calibration

Error on g1 and g2 includes both statistical and systematic components. The systematic component comes from the elliptical cuts used to select the calibration sources.

6

Time Since Start of WS-2014/16 (days)

 Data on this slide follows the multiple neutron calibration runs over 5 weeks at different z-depths that occured in Sep 2014

Determination of Short Lived Xe Activation Isotopes

	Decay Mode	Energy *	Measured Energy	Half Life *	Measured Decay Constant
^{125}I	ε	67.3 keV **	$67.1 \pm 0.4 ext{ keV}$	59.4 d	5.4 ± 0.4 d ***
$^{133}\mathrm{Xe}$	$\beta + \mathrm{IT}$	$Q_{max} \ = \ 346.4 \ + \ IT \ 81 \ keV$		5.2475 d	$5.0~\pm~0.3~\mathrm{d}$
$^{131\mathrm{m}}\mathrm{Xe}$	IT	163.9 keV	$163.6~\pm~0.1~\rm{keV}$	11.84 d	$10.7 \pm 0.4 ext{ d}$
$^{129\mathrm{m}}\mathrm{Xe}$	IT	236.1 keV	$235.3~\pm~0.1~\rm{keV}$	8.88 d	$9.1~\pm~0.3~{ m d}$
$^{125}\mathrm{Xe}$	ε	$275~{ m keV}$ **	$275.5~\pm~0.6~\rm{keV}$	16.9 h	

LUX Preliminary Uncertainties in table are statistical uncertainty in the fit for energy or half life

*Energy and half life measurements from National Nuclear Data Center website (http://www.nndc.bnl.gov/chart/chartNuc.jsp)

**An estimate of energy deposited in electron recoils in LUX from a K-shell electron capture

***Effective half life. Represents rate at which ¹²⁵I is removed from the xenon by the getter. Energy is the close the two neutrino Double Electron Capture ¹²⁴Xe Energy (63.6 keV)

²¹⁰Pb on Detector surfaces

- During construction
 ²²²Rn progeny plate
 out on the inner
 PTFE walls of the
 detector
- All short lived isotopes decay away leaving ²¹⁰Pb, ²¹⁰Bi, and ²¹⁰Po
- These isotopes can be absorbed off of the walls into the xenon

²¹⁰Pb on Walls

Fit requires contributions from ²¹⁰Pb conversion electrons in the range 30.1-33.1 keV, ²¹⁰Pb conversion electrons and gamma ray in range 42.6-46.5 keV, and xenon fluorescence in range 29.5-34.5 keV. Lower limit is set assuming LUX is capable of seeing a fraction 20%: β 63.5 keV of the ²¹⁰Pb decay products on the wall.

J.Low Temp.Phys. 176 (2014) no.5-6, 959-965

Activity of ²¹⁰Pb on wall in the fiducial volume drift range for WS-2014/16 > 9.6 ± 0.6 mBq

²¹⁰Pb in the Fiducial Volume

Background rate is estimated in 17 keV beta region using sidebands. Limit is set at 90% confidence interval as defined in: Applied Radiation and Isotopes Vol 53, Issues 1–2, 15 July 2000, P 45-50.

J.Low Temp.Phys. 176 (2014) no.5-6, 959-965

Activity of ²¹⁰Pb in fiducial volume < 0.099 µBq/kg

> LUX Preliminary

Limit on Leaching of ²¹⁰Pb into Xenon

- Activity of ²¹⁰Pb was measured for each date bin
- If there is no leaching, ²¹⁰Pb activity will decay by 4% over length of WS-2014/16
- Limit on decay constant for leaching of ²¹⁰Pb from detector walls is given as the fit value less 1σ, correcting for 4% ²¹⁰Pb decay

t_{1/2} of ²¹⁰Pb leaching off wall > 1.6 x 10³ days

Detector Effects: High Energy Event Classification

Following Large S1s:

- PMT afterpulsing
 - During PMT calibrations the probability of afterpulsing was measured
 - The results of this calibration were not folded into the pulse/event classification algorithm for high energy data
- Photo-ionization of the grids and impurities in the xenon

Following Large S2s:

- Electron trains
 - Trails of electrons caused by:
 - Photo-ionization of impurities
 - Emission of thermalized electrons not emitted in the primary S2 signal
 - Etc.

Spurious Pulse Classification Algorithm

- Above ~45 keVee, the detector effects described on previous slide can introduce spurious pulses that have the topology of an S1 or an S2
- A new algorithm was developed to identify and classify spurious pulses in high energy events
- In the ^{131m}Xe data, the resulting acceptance of single S1, S2 events increases by a factor of 10 (efficiency of ~100%)
- Does not affect existing publications

Simulation of Neutron Backgrounds

- PMTs
 - Neutrons from (α ,n) from ²³⁸U-chain α 's
 - Neutrons from (α ,n) from ²³²Th-chain α 's
 - Neutrons from ²³⁵U-chain fission
- PTFE
 - Neutrons from (α ,n) from ²¹⁰Po (²³⁸U late) chain α 's
- LUXSim was used to simulate energy depositions and libNEST was used to simulate the detector response
- Applied relevant data quality cuts
- Results (WIMP search ROI during WS-2014/16, 332 live days)
 - 0.16 events from PMTs
 - 0.016 events from PTFE

LUX Preliminary

View of LUX TPC from below

Conclusion

- Short lived activation products from DD neutron generator (including ¹²⁵I with effective decay constant 5.4 ± 0.4 days)
- ²¹⁰Pb on the detector wall and in the fiducial volume (1600 day t_{1/2} for leaching from the walls into the fiducial volume)
- Detector effects, such as PMT afterpulsing, photoionization of grids and impurities, and electron trains **(10x acceptance increase for ^{131m}Xe)**
- Neutron background from PMTs (0.16 events during WS-2014/16) and PTFE (0.016 events during WS-2014/16)

Thanks go to: the LUX Collaboration

Special thanks go to: Shaun Alsum, Vetri Velan, Sergey Burdin, Elizabeth Boulton, Rachel Mannino, Quentin Riffard, Scott Kravitz, Evan Pease, Cláudio Pascoal, and Kevin Lesko