Measurement of liquid argon response to nuclear and electronic recoils with the ARIS experiment

Paolo Agnes
University of Houston
for the ARIS Collaboration
UCLA Dark Matter 2018
Overview

Noble liquids are convenient targets for **direct dark matter searches** (single- and dual-phase TPCs ⇒ **DarkSide**)

Systematics of WIMP search are dominated by uncertainties at low energies:
- relative scintillation efficiency of NR compared to ER (L_{eff})
- effect of the drift electric field (recombination of e^-/ion pairs)

Internal calibrations are limited by
- geometry (spatial distribution)
- source dynamics (few gamma lines or non monochromatic neutrons)

⇒ **External calibrations**
Small scale dedicated detectors operated under controlled conditions

LXe
W. Creus *et al*, JINST 10 (2015) no.08, P08002

LAr

PAOLO AGNES, UNIVERSITY OF HOUSTON, UCLA 2018
The ARIS experiment

TPC (built at UCLA):
- ~0.5 kg of LAr
- PTFE reflector with TPB coated surface
- 7 Hamamatsu 1” PMTs on top, one 3” PMT on bottom
- Anode/Cathode created with ITO plated fused-silica windows
- Grid 1 cm below the anode (extraction field)
- Ability to create a gas pocket for dual-phase running
- Operated in SINGLE PHASE

Measure L_{eff} down < 10 keV$_{\text{NR}}$
Small size to minimize multiple scatters
Collimated and mono-energetic neutron beam coupled with a set of neutron detectors

8 neutron detectors:
- NE213 liquid scintillator
- 20 cm diameter
- 5 cm height
- Signal pulse shape discrimination available
The LICORNE Beam (IPNO, Orsay)

Inverse Reaction

\[^1H(^7Li, n) ^7Be \]

7Li \(\rightarrow\) Hydrogen cell

\[E_{Li} = 14.63 \text{ MeV} \]

\[E_{Li} = ? \]

Advantages:
- Lithium energy near production threshold
- **highly collimated beam**
- high neutron flux on the TPC

Beam characteristics:
- Neutron flux on TPC : \(\sim 10^4 \text{ Hz} \)
- 1 pulse / 400 ns
- Beam pulse width: 1.5 ns

(Coincidence-TOF)

TPC solid angle is 2°

Data vs MC

Neutron energy: \(1.45 \pm 0.08 \text{ MeV}\)

Triangulation (~cm error)

Table:

<table>
<thead>
<tr>
<th>Scattering Angle [deg]</th>
<th>Mean NR Energy [keV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>25.5</td>
</tr>
<tr>
<td>A1</td>
<td>35.8</td>
</tr>
<tr>
<td>A2</td>
<td>41.2</td>
</tr>
<tr>
<td>A3</td>
<td>45.7</td>
</tr>
<tr>
<td>A4</td>
<td>64.2</td>
</tr>
<tr>
<td>A5</td>
<td>85.5</td>
</tr>
<tr>
<td>A6</td>
<td>113.2</td>
</tr>
<tr>
<td>A7</td>
<td>133.1</td>
</tr>
</tbody>
</table>

PAOLO AGNES, UNIVERSITY OF HOUSTON, UCLA 2018
Data taking

12 days of data taking in Oct 2016 at IPN, Orsay
Modeling the TPC response

Take into account TPC the non-uniformity of the TPC response (top/bottom asymmetry)
The TPC trigger logic requires 2 PMTs firing in 100 ns

Includes Poisson statistics

Measured Trigger efficiency to correct real data
Calibration of the TPC

Simulation of the TPC geometry and response:
High precision geometry implemented in a GEANT4-based MC (G4DS framework ⇒ DarkSide, see JINST12,10(2017))

Convolute MC spectra with response map
Determine average light yield and related systematics (1.8% decrease of the full data-taking)

Average light-yield: 6.35 ± 0.05 pe / keV @ null-field
Beam data selection

4 populations:
- Neutrons from \(^7\text{Li}(p,^7\text{Be})n\) reaction (D1)
- Compton scattered beam-correlated \(\gamma\) from \(7\text{Li}^*\) de-excitation (D2)
- Neutrons from fusion evaporation reactions (D3)
- Accidental coincidences between a neutron in the TPC and a \(\gamma\) in the ND (D4)

Cut based on TOF, ND PSD and ND charge.
Do NOT exploit PSD in LAr (NR and ER overlap at low E)

TOF Resolutions:
- Beam - TPC: \(\sim 1.8\) ns
- TPC - ND: \(\sim 1.6 - 3\) ns
ER response linearity

478 keV γ’s from $^7\text{Li}^*$ de-excitation for time-alignment and ER analysis. Mean energy (from full MC) is affected by relativistic boost, up to 6% (large systematics). Pure sample of single ER’s in the Compton dominated region. Coupled with γ sources allows determination of LAr response linearity at null field.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>25.5</td>
<td>7.1</td>
</tr>
<tr>
<td>A1</td>
<td>35.8</td>
<td>13.7</td>
</tr>
<tr>
<td>A2</td>
<td>41.2</td>
<td>17.8</td>
</tr>
<tr>
<td>A3</td>
<td>45.7</td>
<td>21.7</td>
</tr>
<tr>
<td>A4</td>
<td>64.2</td>
<td>40.5</td>
</tr>
<tr>
<td>A5</td>
<td>85.5</td>
<td>65.4</td>
</tr>
<tr>
<td>A6</td>
<td>113.2</td>
<td>98.1</td>
</tr>
<tr>
<td>A7</td>
<td>133.1</td>
<td>117.8</td>
</tr>
</tbody>
</table>

Light yield proven to be constant at 1.6% fitting all sources (42 to 511 keV)
NR fitted spectra

Data is **background subtracted**. MC spectra are convoluted with TPC response map. **LY is fixed** from ER’s. Fit performed with L_{eff} as **free parameter**.
Leff at null field and systematics

<table>
<thead>
<tr>
<th>A0</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR energy [keV]</td>
</tr>
<tr>
<td>(L_{\text{eff}})</td>
</tr>
<tr>
<td>Light-yield</td>
</tr>
<tr>
<td>Beam kinematic</td>
</tr>
<tr>
<td>A0–A7 position</td>
</tr>
<tr>
<td>TPC position</td>
</tr>
<tr>
<td>A0–A7 TOF</td>
</tr>
<tr>
<td>TPC TOF</td>
</tr>
<tr>
<td>Trigger efficiency</td>
</tr>
<tr>
<td>Total Syst.</td>
</tr>
<tr>
<td>Stat.</td>
</tr>
<tr>
<td>Combined</td>
</tr>
<tr>
<td>Combined relative [%]</td>
</tr>
</tbody>
</table>

Trigger efficiency correction to A0

Pure Lindhard:

\[
L_{\text{eff}}^L = \frac{kg(\epsilon)}{1 + kg(\epsilon)}
\]

Mei Model:

\[
L_{\text{eff}}^M = L_{\text{eff}}^L \times \frac{1}{1 + k_B \frac{dE}{dx}}
\]

Parameterization provided with modified Mei model

arXiv:1801.06653
Field dependence: ER

\[S1^F / S1^0 (E) = (\alpha + R(E)) / (1 + \alpha) \]

PARIS model developed for **DarkSide**. Extraction of recombination probability at 200 V/cm field from 39Ar, 83mKr and 37Ar ERs. Underlying assumptions are $W = 19.5$ eV (effective work function) and $\alpha = 0.21$ (excitation/ionization).

For $E > 20$ keV, **Doke-Birks** model fits well (fails at low E) and describes field dependence.

\[
R = \frac{A \, dE/dx}{1 + B \, dE/dx} + Ce^{-D \times F}
\]

- $A \sim 2.5E-3$ cm/MeV
- $C \sim 0.77$
- $B \sim A/(1-C)$
- $D \sim 3.5E-3$ cm/V
- dE/dx: e⁻ StP
- F: field
Field dependence: NR

\[S1^F / S1^0 (E) = \left(\alpha + R(E) \right) / (1 + \alpha) \]

Fixing \(\alpha = 1 \) to break the degeneracy between \(R \) and \(\alpha \) (do not measure charge). Under this assumption the Thomas-Imel model is favored (Doke-Birks and PARIS rejected at 5\(\sigma \)) Thomas-Imel also describes the field induced scintillation quenching with \(b \sim 1 \) and \(C \sim 18.5 \).

\(N_i \) is given by assumptions on \(W \) and \(a \). The goal is to provide a consistent framework for both ER and NR.

\[R = 1 - \frac{ln(1 + \xi)}{\xi} \]

\[\xi = C_{box} \frac{N_i}{F^\beta} \]

F: field
Conclusions and outlook

The ARIS external calibration experiment provides a **precision measurement of L_{eff}** as a function of the recoil energy at the lower energy ($7 \text{ keV}_{\text{NR}}$).

It provides evidence for the **ER response linearity at null field** within 1.6%.

It provides a cross check of the ER S1 energy scale extracted from DarkSide-50 (**the PARIS model** JINST12,10(2017))

It provides a **comprehensive model** for the scintillation response of LAr in the range of interest for the dark matter searches for **both ER and NR**.

All these results are discussed in [arXiv:1801.06653](https://arxiv.org/abs/1801.06653), a second set of analysis is in preparation (LAr time response profile)

The ARIS TPC was operated in single-phase configuration. The recent developments highlight the need to for measurement of the **ionization yield** at very low recoil energy.
Additional slides
Beam data: time resolution

Trigger condition requires TPC, beam and one ND triggered in 100 ns. Use the 478 keV gamma from 7Li* de-excitation for time-alignment.

TOF Resolutions:
- TPC: ~1.8 ns
- EDEN: ~1.6 - 3 ns
A2 position
Background subtraction

- TOF beam - TPC
- TOF beam - ND
- Neutrons
- Fusion-evaporation neutron
- γ-flash