Prospects for WIMP and axion detection in SUSY with radiatively-driven naturalness

Howard Baer University of Oklahoma UCLA DM2018

Lots of problems with SM

- nu mass
- gauge hierarchy, why m(h) so small
- strong CP: why 3 not 4 light pions from QCD?
- dark matter?
- dark energy?
- baryogenesis?

SUSY either solves or improves all of these and is supported by data: gauge couplings, mt, mh

But where is SUSY

- LHC: m(gluino)>2 TeV
- LHC: m(t1)>1 TeV
- m(h)~125 GeV

- compare: Barbieri-Giudice naturalness: m(gluino)<350 GeV
- LHC limits way beyond naturalness bounds
- is SUSY unnatural? Is SUSY dead?

No

- BG naturalness computed in multi-parameter effective theories
- In more fundamental theories (e.g. SUGRA/string) all soft terms inter-dependent: computed as multiples of more fundamental gravitino mass m(3/2)
- Then large cancellations in fine-tuning computation (e.g. focus point SUSY, but now via all soft terms)
- More conservative measure which allows for cancellations: Δ_{EW}

$$m_Z^2/2 = \frac{m_{H_d}^2 + \Sigma_d^d - (m_{H_u}^2 + \Sigma_u^u) \tan^2 \beta}{\tan^2 \beta - 1} - \mu^2 \sim -m_{H_u}^2 - \Sigma_u^u - \mu^2$$

naturalness: no large unnatural cancellations on RHS

HB, Barger, Huang, Mustafayev, Tata, PRL109 (2012)161802

then:

- $\mu \sim 100 200 \text{ GeV}$
- $m_{H_u}^2$ can be driven to natural via large top Yukawa
- radiative corrections not too large m(t1)~1-3 TeV fine

naturalness: only higgsinos need be ~100-200 GeV

higgsino is LSP

higgsino-like WIMP~100-200 GeV thermally underproduced as DM

radiative corrections drive $m_{H_u}^2$ from unnatural GUT scale values to naturalness at weak scale: radiatively-driven naturalness

Evolution of the soft SUSY breaking mass squared term $sign(m_{H_u}^2)\sqrt{|m_{H_u}^2|}$ vs. Q

SUSY mu problem: mu term is SUSY, not SUSY breaking: expect mu~M(Pl) but phenomenology requires mu~m(Z)

- NMSSM: mu~m(3/2); beware singlets!
- Giudice-Masiero: mu forbidden by some symmetry: generate via Higgs coupling to hidden sector
- Kim-Nilles: invoke SUSY version of DFSZ axion solution to strong CP: $W \ni \lambda \phi_{PQ}^2 H_u H_d/M_P$

KN: PQ symmetry forbids mu term, but then it is generated via PQ breaking

Little Hierarchy due to mismatch between PQ breaking and SUSY breaking scales?

$$\mu \sim \lambda f_a^2/M_P$$
 $m_{3/2} \sim m_{hid}^2/M_P$ $f_a \ll m_{hid}$

Higgs mass tells us where to look for axion!

$$m_a \sim 6.2 \mu \text{eV} \left(\frac{10^{12} \text{ GeV}}{f_a}\right)$$

bounds from naturalness (3%)	old BG/DG	Delta_EW
mu	350 GeV	350 GeV
gluino	400-600 GeV	5000 GeV
t1	450 GeV	3000 GeV
sq/sl	550-700 GeV	10-20 TeV

h(125) and LHC limits are perfectly compatible with 3-10% naturalness: no crisis!

Typical spectrum for low Δ_{EW} models

There is a Little Hierarchy, but it is no problem

$$\mu \ll m_{3/2}$$

Mainly higgsino-like WIMPs thermally underproduce DM

green: excluded; red/blue:allowed

HB, Barger, Mickelson

 $\Omega_{\chi}^{TP}h^2 \sim 10 - 15$ too low!

but axion may constitute bulk of DM

mixed axion-neutralino production in early universe

- \bullet neutralinos: thermally produced (TP) or NTP via $\tilde{a},\,s$ or \tilde{G} decays
 - re-annihilation at $T_D^{s,\tilde{a}}$
- axions: TP, NTP via $s \to aa$, bose coherent motion (BCM)
- saxions: TP or via BCM
 - $-s \rightarrow gg$: entropy dilution
 - $-s \rightarrow SUSY$: augment neutralinos
 - $-s \rightarrow aa$: dark radiation ($\Delta N_{eff} < 1.6$)
- axinos: TP
 - $-\tilde{a} \rightarrow SUSY$ augments neutralinos
- gravitinos: TP, decay to SUSY

to calculate: solve 8 coupled Boltzmann equation Bae, HB, Serce

usual picture => mixed axion/WIMP

KJ Bae, HB, Lessa, Serce

much of parameter space is axion-dominated with 10-15% WIMPs

higgsino abundance

axion abundance

mainly axion CDM for fa<~10^12 GeV; for higher fa, then get increasing wimp abundance

Bae, HB, Lessa, Serce

Direct higgsino detection rescaled for minimal local abundance $\xi \equiv \Omega_{\chi}^{TP} h^2/0.12$

Can test completely with ton scale detector or equivalent (subject to minor caveats)

Prospects for SD WIMP searches:

Prospects for IDD WIMP searches:

suppressed by square of diminished WIMP abundance

SUSY DFSZ axion: large range in m(a) but coupling reduced may need to probe broader and deeper! $a_{\alpha} = -\frac{1}{2} \int_{f, \tilde{h}}^{\infty} df$

summary slide

- Solve gauge hierarchy (SUSY)
- Solve strong CP (axion)
- Solve SUSY mu problem (SUSY DFSZ axion)
- Allow/generate Little Hierarchy [mu << m(soft)]
- Expect mixed higgsino/(SUSY) DFSZ axion DM
- natural higgsino LSP should be covered by n-ton scale DD search
- m(a) for SUSY DFSZ axion spread across vast range
- a-gamma-gamma coupling reduced compared to non-SUSY DFSZ
- Deeper and broader probes in axion p-space are required/encouraged
- natural SUSY: maybe see at HL-LHC but may need HE-LHC (gl/t1)
- ILC500 is ideal for light higgsinos

How much is too much fine-tuning?

Visually, large fine-tuning has already developed by $\mu \sim 350$ or $\Delta_{EW} \sim 30$

higgsinos should be accessible to ILC!

Little Hierarchy from radiative PQ breaking? exhibited within context of MSY model

Murayama, Suzuki, Yanagida (1992); Gherghetta, Kane (1995) Choi, Chun, Kim (1996) Bae, HB, Serce, PRD91 (2015) 015003

augment MSSM with PQ charges/fields:

$$\hat{f}' = \frac{1}{2} h_{ij} \hat{X} \hat{N}_{i}^{c} \hat{N}_{j}^{c} + \frac{f}{M_{P}} \hat{X}^{3} \hat{Y} + \frac{g}{M_{P}} \hat{X}^{2} \hat{Y} \hat{H}_{u} \hat{H}_{d}. \qquad 10$$

$$\mu = 150$$

$$g = 0.26 v_{PQ} = 6.79 \times 10^{10} \text{ GeV}$$

$$g = 2.54 v_{PQ} = 3.14 \times 10^{10} \text{ GeV}$$

$$g = 2.54 v_{PQ} = 3.14 \times 10^{10} \text{ GeV}$$

$$g = 2.54 v_{PQ} = 3.14 \times 10^{10} \text{ GeV}$$

$$g = 2.54 v_{PQ} = 3.14 \times 10^{10} \text{ GeV}$$

$$g = 2.54 v_{PQ} = 3.14 \times 10^{10} \text{ GeV}$$

$$g = 2.54 v_{PQ} = 3.14 \times 10^{10} \text{ GeV}$$

$$g = 2.54 v_{PQ} = 3.14 \times 10^{10} \text{ GeV}$$

$$g = 2.54 v_{PQ} = 3.14 \times 10^{10} \text{ GeV}$$

$$g = 2.54 v_{PQ} = 3.14 \times 10^{10} \text{ GeV}$$

$$g = 2.54 v_{PQ} = 3.14 \times 10^{10} \text{ GeV}$$

$$g = 2.54 v_{PQ} = 3.14 \times 10^{10} \text{ GeV}$$

$$g = 2.54 v_{PQ} = 3.14 \times 10^{10} \text{ GeV}$$

$$g = 2.54 v_{PQ} = 3.14 \times 10^{10} \text{ GeV}$$

$$g = 2.54 v_{PQ} = 3.14 \times 10^{10} \text{ GeV}$$

$$g = 2.54 v_{PQ} = 3.14 \times 10^{10} \text{ GeV}$$

$$g = 2.54 v_{PQ} = 3.14 \times 10^{10} \text{ GeV}$$

$$g = 2.54 v_{PQ} = 3.14 \times 10^{10} \text{ GeV}$$

$$g = 2.54 v_{PQ} = 3.14 \times 10^{10} \text{ GeV}$$

$$g = 2.54 v_{PQ} = 3.14 \times 10^{10} \text{ GeV}$$

$$g = 2.54 v_{PQ} = 3.14 \times 10^{10} \text{ GeV}$$

$$g = 2.54 v_{PQ} = 3.14 \times 10^{10} \text{ GeV}$$

$$g = 2.54 v_{PQ} = 3.14 \times 10^{10} \text{ GeV}$$

$$g = 2.54 v_{PQ} = 3.14 \times 10^{10} \text{ GeV}$$

$$g = 2.54 v_{PQ} = 3.14 \times 10^{10} \text{ GeV}$$

$$g = 3.54 v_{PQ} = 3.14 \times 10^{10} \text{ GeV}$$

$$g = 3.54 v_{PQ} = 3.14 \times 10^{10} \text{ GeV}$$

$$g = 3.54 v_{PQ} = 3.14 \times 10^{10} \text{ GeV}$$

$$g = 3.54 v_{PQ} = 3.14 \times 10^{10} \text{ GeV}$$

$$g = 3.54 v_{PQ} = 3.14 \times 10^{10} \text{ GeV}$$

$$g = 3.54 v_{PQ} = 3.14 \times 10^{10} \text{ GeV}$$

$$g = 3.54 v_{PQ} = 3.14 \times 10^{10} \text{ GeV}$$

$$g = 3.54 v_{PQ} = 3.14 \times 10^{10} \text{ GeV}$$

$$g = 3.54 v_{PQ} = 3.14 \times 10^{10} \text{ GeV}$$

 $10^{\overline{10}}$

 10^{11}

 10^{13}

 10^{12}

 10^{15}

 10^{16}

 10^{17}

 10^{14}

Q (GeV)

Large $m_{3/2}$ generates small $\mu \sim 100-200$ GeV!

Why do soft terms take on values needed for natural (barely-broken) EWSB?

string theory landscape?

• assume model like MSY/CCK where $\mu \sim 100~{\rm GeV}$

• then $m(weak)^2 \sim |m_{H_u}^2|$

• If all values of SUSY breaking field $\langle F_X \rangle$ equally likely, then mild (linear) statistical draw towards large soft terms

• This is balanced by anthropic requirement of weak scale $m_{weak} \sim 100 \text{ GEV}$

Anthropic selection of $m_{weak} \sim 100$ GeV: If m_W too large, then weak interactions $\sim (1/m_W^4)$ too weak weak decays, fusion reactions suppressed elements not as we know them

statistical draw to large soft terms balanced by anthropic draw toward red (m(weak)~100 GeV): then m(Higgs)~125 GeV and natural SUSY spectrum!

Giudice, Rattazzi, 2006 HB, Barger, Savoy, Serce, PLB758 (2016) 113

statistical/anthropic draw toward FP-like region

Expectations for SUSY from statistical analysis of II-B string landscape: power law selection of soft terms anthropic draw of m(weak)~100 GeV

HB, Barger, Serce, Sinha

Conclusions:

- SUSY very much alive: natural for mu~100-200 GeV
- EW naturalness: higgsino-like WIMP
- QCD naturalness: axion
- SUSY mu problem/Little Hierarchy: SUSY DFSZ axion
- DM=higgsino-like WIMP+DFSZ axion admixture?
- •n-ton SI noble liquid detectors should probe all p-space
- axions: must probe broader and deeper!
- (HL)-LHC: maybe see SUSY, maybe not
- •HE-LHC33 TeV may be required
- ILC500 is ideal for light higgsinos